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Batch processing

… for recurring tasks such as large-scale data mining, aggregation,
ETL offloading, etc.



OLTP

… for example user-facing eCommerce transactions, real-time
messaging at scale (FB) , etc.



Stream processing

… in order to handle stream sources such as social media feeds
or sensor data (mobile phones, RFID, weather stations, etc.)



Search

… retrieval of items from semi-structured data formats
(XML, JSON, etc.), documents (plain text, etc.) and
datastores (MongoDB, CouchDB, etc.)
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http://www.flickr.com/photos/9479603@N02/4144121838/ licensed under CC BY-NC-ND 2.0
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Interactive Query (?)
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Use Case I

• Jane, a marketing analyst

• Determine target segments

• Data from different sources



Use Case II

• Logistics – supplier status

• Queries

– How many shipments from supplier X?

– How many shipments in region Y?– How many shipments in region Y?

SUPPLIER_ID NAME REGION

ACM ACME Corp US

GAL GotALot Inc US

BAP Bits and Pieces Ltd Europe

ZUP Zu Pli Asia

{
"shipment": 100123,
"supplier": "ACM",
“timestamp": "2013-02-01",
"description": ”first delivery today”
},
{
"shipment": 100124,
"supplier": "BAP",
"timestamp": "2013-02-02",
"description": "hope you enjoy it”
}
…



Requirements

• Support for different data sources

• Support for different query interfaces

• Low-latency/real-time

• Ad-hoc queries• Ad-hoc queries

• Scalable, reliable



And now for something completely different …



Google’s Dremel

Dremel is a scalable, interactive ad-hoc query system for
analysis of read-only nested data. By combining multi-
level execution trees and columnar data layout, it is
capable of running aggregation queries over trillion-row

Dremel is a scalable, interactive ad-hoc query system for
analysis of read-only nested data. By combining multi-
level execution trees and columnar data layout, it is
capable of running aggregation queries over trillion-row

http://research.google.com/pubs/pub36632.html

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton,
Theo Vassilakis, Proc. of the 36th Int'l Conf on Very Large Data Bases (2010), pp. 330-339

capable of running aggregation queries over trillion-row
tables in seconds. The system scales to thousands of
CPUs and petabytes of data, and has thousands of users
at Google.
…

capable of running aggregation queries over trillion-row
tables in seconds. The system scales to thousands of
CPUs and petabytes of data, and has thousands of users
at Google.
…



Google’s Dremel

multi-level execution trees

columnar data layout



Google’s Dremel

mapping nested data to tables

nested data + schema column-striped representation



Google’s Dremel

experiments:
datasets & query performance



Back to Apache Drill …



Apache Drill–key facts

• Inspired by Google’s Dremel

• Standard SQL 2003 support

• Plug-able data sources

• Nested data is a first-class citizen• Nested data is a first-class citizen

• Schema is optional

• Community driven, open, 100’s involved



High-level Architecture



Wire-level Architecture

• Each node: Drillbit - maximize data locality

• Co-ordination, query planning, execution, etc, are distributed

• By default Drillbits hold all roles

• Any node can act as endpoint for a query
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Wire-level Architecture

• Zookeeper for ephemeral cluster membership info

• Distributed cache (Hazelcast) for metadata, locality
information, etc.

Curator/Zk

Distributed Cache
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Wire-level Architecture

• Originating Drillbit acts as foreman, manages query execution,
scheduling, locality information, etc.

• Streaming data communication avoiding SerDe
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Principled Query Execution

Source
Query Parser

Logical
Plan Optimizer

Physical
Plan Execution

SQL 2003
DrQL
MongoQL
DSL

scanner APItopologyquery: [
{
@id: "log",
op: "sequence",
do: [
{
op: "scan",
source: “logs”
},
{
op:
"filter",

condition:
"x > 3”

},

parser API



Drillbit Modules

DFS Engine

RPC Endpoint

SQL

HiveQL
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Key features

• Full SQL – ANSI SQL 2003

• Nested Data as first class citizen

• Optional Schema

• Extensibility Points …• Extensibility Points …



Extensibility Points

• Source query parser API

• Custom operators, UDF logical plan

• Serving tree, CF, topology physical plan/optimizer

• Data sources &formats scanner API• Data sources &formats scanner API

Source
Query Parser

Logical
Plan Optimizer

Physical
Plan Execution



… and Hadoop?

• HDFS can be a data source

• Complementary use cases*

• … use Apache Drill

*
)
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• … use Apache Drill

– Find record with specified condition

– Aggregation under dynamic conditions

• … use MapReduce

– Data mining with multiple iterations

– ETL
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Basic Demo
{
"id": "0001",
"type": "donut",
”ppu": 0.55,
"batters":
{
"batter”:
[

{ "id": "1001", "type": "Regular" },
{ "id": "1002", "type": "Chocolate" },

…

data source: donuts.json

{
"sales" : 700.0,
"typeCount" : 1,
"quantity" : 700,
"ppu" : 1.0

}
{
"sales" : 109.71,

https://cwiki.apache.org/confluence/display/DRILL/Demo+HowTo

data source: donuts.json

query:[ {
op:"sequence",
do:[

{
op: "scan",
ref: "donuts",
source: "local-logs",
selection: {data: "activity"}

},
{
op: "filter",
expr: "donuts.ppu < 2.00"

},
…

logical plan: simple_plan.json

result: out.json

"sales" : 109.71,
"typeCount" : 2,
"quantity" : 159,
"ppu" : 0.69

}
{
"sales" : 184.25,
"typeCount" : 2,
"quantity" : 335,
"ppu" : 0.55

}



BE A PART OF IT!



Status

• Heavy development by multiple organizations

• Available

– Logical plan (ADSP)– Logical plan (ADSP)

– Reference interpreter

– Basic SQL parser

– Basic demo



Status

May 2013

• Full SQL support (+JDBC)

• Physical plan• Physical plan

• In-memory compressed data interfaces

• Distributed execution

• HBase and MySQL storage engine

• WebUI client



Contributing

Contributions appreciated (besides code drops)!

• Test data & test queries

• Use case scenarios (textual/SQL queries)• Use case scenarios (textual/SQL queries)

• Documentation

• Further schedule

– Alpha Q2

– Beta Q3



Kudos to …

• Julian Hyde, Pentaho

• Lisen Mu, XingCloud

• Tim Chen, Microsoft

• Chris Merrick, RJMetrics• Chris Merrick, RJMetrics

• David Alves, UT Austin

• Sree Vaadi, SSS/NGData

• Jacques Nadeau, MapR

• Ted Dunning, MapR



Engage!

• Follow @ApacheDrill on Twitter

• Sign up at mailing lists (user | dev)
http://incubator.apache.org/drill/mailing-lists.html

• Standing G+ hangouts every Tuesday at 5pm GMT
http://j.mp/apache-drill-hangouts

• Keep an eye on http://drill-user.org/


