Developing and testing TensorFlow Lite Micro edge AI algorithms on RISC-V and FPGAs

London Open Source Meetup for RISC-V, 2021-01-18
Michael Gielda, mgielda@antmicro.com
ANTMICRO

- Founded in 2009
- Building open source platforms and helping customers develop software-driven products
- Industrial IoT and embedded systems: AI/ML in defense/security, mining, agriculture, autonomous vehicles, robotics, aerospace, industrial automation
- Member of Linux Foundation, Zephyr Project, CHIPS Alliance, OpenPOWER Foundation, Strategic Founding member of RISC-V International
- Introducing new design methodologies and workflows based on open source
WHAT WE DO

See our technology showcase on antmicro.com
WHAT WE DO

HARDWARE
Proof of Concepts (PoC), demonstrators, prototyping, open source platforms

SOFTWARE & AI
OS porting, building BSPs, build systems, device management, edge & cloud AI

FPGA & ASIC
Custom IP blocks, SiP development, soft SoCs, heterogeneous processing systems

TOOLS
Tools, new software and hardware development and testing methodologies
WHAT WE DO

HARDWARE
Proof of Concepts (PoC), demonstrators, prototyping, open source platforms

SOFTWARE & AI
OS porting, building BSPs, build systems, device management, edge & cloud AI

FPGA & ASIC
Custom IP blocks, SiP development, soft SoCs, heterogeneous processing systems

TOOLS
Tools, new software and hardware development and testing methodologies
TINY ML - BIG OPPORTUNITIES, BIG CHALLENGES

- Power/performance/memory constraints
- Sourcing hardware
- Testing at scale
- Configuration of complex systems of devices
- Tedious manual testing procedures
- Repeatability/Determinism
RENODE CAN HELP

- Our tools empower organizations like Google, Arm, QuickLogic, Microchip with test-driven open source methodologies of developing TinyML
- Google and Arm use Renode to develop and test TensorFlow Lite
- QuickLogic embraced open FPGA tools, Renode and other open technologies from Antmicro
- Microchip hired us to develop their pre-silicon development platform for RISC-V based PolarFire SoC with Renode
Develop your IoT product with Renode:

GET STARTED
A BIT OF HISTORY

- Simulation framework developed by Antmicro since 2010
- Created in response to our internal needs
- Open source since 2015
- In 2020 used by Arm, NXP, Google, Zephyr, Systerel, QuickLogic, Microchip, Amazon, a number of startups and universities including Poznan University of Technology
Use cases

- Development of complex software for embedded and IoT systems
- Architectural exploration and research
- Pre-silicon prototyping and HW-SW co-development
- Co-simulation with FPGA
Features & use

- Plug-and-play building blocks
- “Batteries included” - lots of demos and binaries
- Flexible, deterministic and software-agnostic
- Continuous Integration-oriented - Robot Framework, Jenkins, GitLab CI, GitHub Actions
- Enables e.g. protocol / stack testing: OPC-UA, TSN, 6lowpan, Thread etc.
Simulate full systems / real devices
Peripherals & sensors

Our focus is not just on SoCs, but also I/O peripherals
- UART, SPI, I2C, RAM, ROM, GPIO, CAN,
 ETH, I2S, PCIE...

Also sensors:
- Thermometers, humidity meters, accelerometers,
 microphones, etc.

This allows end-to-end machine learning
processing in simulation with real and synthetic data
Platform description format

- Human readable
- Modular
- Extendible
- Enable new boards / platforms w/o coding
Platform description format

uart: UART.MiV_CoreUART @ sysbus 0x70001000
 clockFrequency: 66000000

cpu: CPU.RiscV @ sysbus
 cpuType: "rv32g"

plic: Interrupts.PlatformLevelInterruptController @ sysbus 0x40000000
 IRQ -> cpu@1
 numberOfSources: 31 //based on release notes
CO-SIMULATION WITH HDL SIMULATOR

- Provides an integration layer for Verilator
- Enables HW/SW co-simulation with Verilator
- No need to create models of the IP you can “verilate”
- Supports AXI4Lite and Wishbone, full AXI4 under way
- Support for interrupts and external interfaces, like UART Rx/Tx lines
CO-SIMULATION WITH FPGA

- Another alternative that can be used in FPGA co-development is emulating IP on real FPGA HW
- Majority of simulation (e.g. RISC-V SoC) is in Renode, only the part under development is in the FPGA
- Renode supports EtherBone protocol, to interact with Wishbone-connected soft IP
- Connection with the FPGA over a socket - possibly in a remote location
Supported platforms/vendors

<table>
<thead>
<tr>
<th>LEON3</th>
<th></th>
<th>QuickLogic</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORDIC</td>
<td></td>
<td>MICROCHIP</td>
</tr>
<tr>
<td>SILICON LABS</td>
<td></td>
<td>TEXAS INSTRUMENTS</td>
</tr>
<tr>
<td>SiFive</td>
<td></td>
<td>RISC-V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OpenPOWER</td>
</tr>
</tbody>
</table>
Some supported RISC-V/FPGA boards
REAL-WORLD USAGE
ML ACCELERATION WITH QUICKLOGIC FPGA PLATFORM

- QuickFeather devkit is a tiny open hardware platform (ARM Cortex-M4F + FPGA) built for QuickLogic by Antmicro with TinyML in mind
- QuickLogic is the 1st ever FPGA vendor to support/sponsor open source FPGA tools
- Developed by Antmicro in joint project with Google
- QL also sponsored Renode simulation and Zephyr RTOS port
NEXT STEP: RISC-V + OPEN SOURCE FPGA

- Next gen platform with RISC-V and larger FPGA
- Also supported in open source FPGA tools developed by Antmicro
- Part of Open Hardware Group’s Core-V project, collaboration with e.g. NXP and Silicon Labs
- Will enable high-perf, low-power TinyML
- Renode support also in progress, co-sponsored by Google and QuickLogic
- Read more
GOOGLE / TF LITE AND ANTMICRO COLLABORATION

- Collaboration started in 2018
- Lots of joint work around open source ASICs, FPGA, software, ML
- Initially enabled running TF Lite on RISC-V PoC, presented at RISC-V Summit 2018
- First integration with Zephyr and co-marketing with Zephyr and RISC-V
- Resulted in a [note on TF Lite blog](#) demoing soft RISC-V MCU on Digilent Arty board
- Turned into large direct collaboration and adoption of Renode by the TF Lite team
THE ORIGINAL DEMO THAT BROUGHT US HERE

- Renode-simulated soft VexRiscv CPU + sensors
- Zephyr + TFLite integration
- Demo originally created for Arty board with ADXL345 accelerometer
RENODE IN EDUCATION

- To be used in Harvard University’s EdX course with over 16000 participants
- Renode also adopted at University of Minnesota, lots of interest from other unis
- PUT course in Collaboration with ST - make TinyML boards available to students virtually during pandemic despite lab closures
VEDLIOT - VERY EFFICIENT DEEP LEARNING IN IOT

- EC-funded edge ML oriented project, coordinated by Bielefeld University, 12 international members
- Aim: scalable, deep-learning capable ML pipelines, also in FPGA
- Antmicro’s role
 - open source RISC-V soft SoC infrastructure
 - Renode used as a simulation platform
- Read more
RENODE - TESTING & METRICS
Renode-based Continuous Integration workflow for IoT systems

- **Company Environment**
- **Local PC**
 - Interactive test and debug in Renode
 - Get help from colleagues
- **Commit code**
- **Develop with favorite IDE/compiler**
- **Tests pass?**
 - Yes: Merge changes
 - No: Go back to development
- **Push to server**
 - CI e.g. with Robot + Renode
 - Test with various configurations
- **Field tests / deployment**
Developing and testing TensorFlow Lite Micro edge AI algorithms on RISC-V and FPGAs

EXAMPLE CI

- You can look at the “original” demo repository - there’s a CI performing the whole “demo” procedure automatically
- A demo of how CI with Renode could work (also possible with GitLab CI, Jenkins, GitHub Actions... We work with all of them)
RENODE METRICS ANALYZER

- Collecting execution data from the simulation
- Representing data as graphs
- Currently supported:
 - Executed instructions
 - Memory access
 - Peripheral access
 - Exceptions
- Virtual and real-time stamps
MSC: TF LITE MACHINE LEARNING
ALGORITHM ANALYSIS

- MSc: Analysis of optimization method - quantization
- Experiments with CNN model architectures
- No instrumentation!
- Hard to get that kind of data from real hardware
- Very good for experimenting with e.g. various amounts of available memory

<table>
<thead>
<tr>
<th>Metric</th>
<th>2 pooling layers</th>
<th>1 pooling layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.966887417219</td>
<td>0.940397350993</td>
</tr>
<tr>
<td>Size</td>
<td>19616 bytes</td>
<td>137180 bytes</td>
</tr>
<tr>
<td>Execution time</td>
<td>2425.8 ms</td>
<td>20206.2 ms</td>
</tr>
<tr>
<td>Memory reads</td>
<td>4740 operations</td>
<td>35106 operations</td>
</tr>
<tr>
<td>Memory writes</td>
<td>888 operations</td>
<td>4777 operations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Base TensorFlow model</th>
<th>Convert model</th>
<th>Quantized model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model size</td>
<td>94 744 bytes</td>
<td>19 616 bytes</td>
<td>8 896 bytes</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.970198690891</td>
<td>0.970198675497</td>
<td>0.94701986755</td>
</tr>
<tr>
<td>Execution time</td>
<td>N/A</td>
<td>2280.7 mc</td>
<td>121.9 ms</td>
</tr>
<tr>
<td>Memory reads</td>
<td>N/A</td>
<td>4406 operations</td>
<td>306 operations</td>
</tr>
<tr>
<td>Memory writes</td>
<td>N/A</td>
<td>834 operations</td>
<td>78 operations</td>
</tr>
</tbody>
</table>
RENODE + TF LITE IN 5 MINUTES: GOOGLE COLAB

```
[10] @timeout 120 tail -c+2 -f renode/uart.dmp | sed '/"Person score: ".*/q'
  tell_renode('q')
  expect cli(\'Renode is quitting\')
  shutdown_renode()

  Attempting to start Arducam
  Starting capture
  Image captured
  Reading 2375 bytes from Arducam
  Finished reading
  Decoding JPG and converting to greyscale
  Image decoded and processed
  Person score: 116 No person score: -116
```

```
[6] from renode.tools.metrics_analyzer.metrics_parser import MetricsParser
    init_notebook_mode(connected=False)
    parser = MetricsParser(\'renode/metrics.dump\')

configure_plotly_browser_state()
show_executed_instructions(parser)
```

Executed Instructions
RENODE + TF LITE IN 5 MINUTES: GOOGLE COLAB

- Install requirements
- Take a photo
- Convert the photo, required size < 4096 bytes
- Run a person-detection example with a captured photo in Renode
 - Renode metrics analysis
 - Section
RENODE + TF LITE IN 5 MINUTES: GOOGLE COLAB

- A (mostly) Python workspace in the cloud
- Built with Jupyter notebooks
- Allows you to run arbitrary scripts and share the results online
- Fantastic tool for presentation purposes
- Very popular among students and academics
- Together with Google we implemented colabs which can process video and audio recorded from your computer
- To be used in EdX course with over 16000 participants
- See example colab
TOWARDS ML FLEXIBILITY

- With the Core-V-MCU support, Renode introduces custom instruction and register support
- Core-V-MCU and CV32E40P - Pulpissimo-based platform with many custom extensions
- Ideal for ML accelerator prototyping

```
RegisterCSR((ulong)CustomCSR.HardwareLoop1End, LoopEnd);
RegisterCSR((ulong)CustomCSR.HardwareLoop1Counter, LoopCounter);

InstallCustomInstruction(pattern: "FFFFFFFFFFFFBBBBB000DDDDD0001011",
handler: opcode => LoadRegisterImmediate(opcode, Width.Byte,
BitExtension.Sign, "p.lb rD, Imm(rs1!)"));

InstallCustomInstruction(pattern: "FFFFFFFFFFFFBBBBB100DDDDD0001011",
handler: opcode => LoadRegisterImmediate(opcode, Width.Byte,
BitExtension.Zero, "p.lbu rD, Imm(rs1!)"));
```
TOWARDS ML FLEXIBILITY

- For fast prototyping - Python hooks support
- No need for recompilation - write them directly in a script
- Access to all CPU details

```python
set $xadd

""
src_reg_a = instruction & 0xF
src_reg_b = (instruction >> 12) & 0xF
state['res'] = res
""

sysbus.cpu InstallCustomInstructionHandlerFromString
"1011001110001111bbbb11111000aaaa" "$xadd"
```
<table>
<thead>
<tr>
<th>Project Name</th>
<th>Status</th>
<th>Last Run</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>LITEX MICROPYTHON TUTORIAL TEST</td>
<td>Pass</td>
<td>2021-01-10 04:19:54</td>
<td>0:04:07</td>
</tr>
<tr>
<td>ZEPHYR TSN/GPTP ON SAM E70</td>
<td>Pass</td>
<td>2020-12-06 04:21:21</td>
<td>0:10:04</td>
</tr>
<tr>
<td>STM32F7 MBED OS HELLO WORLD EXAMPLE</td>
<td>Pass</td>
<td>2020-11-13 14:03:40</td>
<td>0:02:45</td>
</tr>
<tr>
<td>RPL UDP IN CONTIKI-NG ON CC2538DK</td>
<td>Pass</td>
<td>2020-12-20 04:19:55</td>
<td>0:03:54</td>
</tr>
</tbody>
</table>
Invocation

815ae119-2110-4606-8836-51596c15880d (January 18th, 2021, 5:34:26 pm)

179 targets evaluated on January 18th, 2021 at 5:34:26 pm for 20.5 m

Evaluation started by distant on runner-53b050fc-project-11-concurrent-1

<table>
<thead>
<tr>
<th>Invocation</th>
<th>Targets affected</th>
<th>Broken</th>
<th>Failed</th>
<th>Failed (non-critical)</th>
<th>Successful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succeeded</td>
<td>179</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>177</td>
</tr>
</tbody>
</table>

Targets

2 targets failed (non-critical)
- QuarkC1000.Should Serve Webpage Using Tap
- SiFive-FU540.Should Generate Proper PWM Pulses

177 targets passed
- robot-integration.Should Fail On Loading Nonexisting Script
- robot-integration.Should Fail On Builtin With Invalid Parameters
- robot-integration.Should Fail On Peripheral Method With Invalid Parameters
- robot-integration.Should Fail On Python Command With Invalid Parameters
- robot-integration.Should Fail On Command Error
- emulation-environment.Should List Sensor Once
- emulation-environment.Should Set Temperature On Single Sensor
- emulation-environment.Should Set Temperature On Single Sensor Twice
Developing and testing TensorFlow Lite Micro edge AI algorithms on RISC-V and FPGAs

Build logs

INFO:Sc: Creating Sc... (2021-05-18 04:23:45)
INFO:Sc:---
INFO:Sc: FPGA device : xc7a35t-csg324-1.
INFO:Sc: System clocks 100.000Hz.
INFO:Sc:BusHandler:Creating Bus Handler...
INFO:Sc:BusHandler:Adding reserved Bus Regions...
INFO:Sc:BusHandler:Bus Handler created.
INFO:Sc:SRRHandler:Creating CSR Handler...
INFO:Sc:SRRHandler:8-bit CSR Bus, 32-bit aligned, 16.0kIB Address Space, 28448 Paging, big Ordering (Up to 32 Locations).
INFO:Sc:SRRHandler:Adding reserved CSRs...
INFO:Sc:SRRHandler:CSR Handler created.
INFO:Sc:IQHandler:Creating IRQ Handler...
INFO:Sc:IQHandler:IRQ Handler (up to 32 Locations).
INFO:Sc:IQHandler:Adding reserved IRQs...
INFO:Sc:IQHandler:IRQ Handler created.
INFO:Sc:---
INFO:Sc:Initial Sc:
INFO:Sc:---
INFO:Sc:32-bit wishbone Bus, 4.096kB Address Space.
INFO:Sc:8-bit CSR Bus, 32-bit aligned, 16.0kIB Address Space, 28448 Paging, big Ordering (Up to 32 Locations).
INFO:Sc:IRQ Handler (up to 32 Locations).
INFO:Sc:---
INFO:Sc:SRRHandler:ctl1 CSR allocated at Location 8
INFO:Sc:BusHandler:cpu_bus added as Bus Master.
INFO:Sc:BusHandler:cpu_bus added as Bus Slave.
INFO:Sc:SRRHandler:ctl1 CSR allocated at Location 1
INFO:Sc:BusHandler:rom Region added at Origin: 0x00000000, Size: 0x00010000, Mode: R, Cached: True, Linker: False.
INFO:Sc:BusHandler:rom added as Bus Slave.
INFO:Sc:RAM rom added: Origin: 0x00000000, Size: 0x00010000, Mode: R, Cached: True, Linker: False.
WHAT NEXT?
SOME ONGOING DEVELOPMENTS WITH TF LITE MICRO TEAM

- Work going on in TF Lite Micro mainline (and branches/PRs)
- Arduino Nano 33 BLE Sense with Nordic NRF52840 Cortex-M4F + ArduCam Mini OV2640 SPI camera - used in Harvard TinyML course
- Also adding support for more platforms, including QuickLogic RISC-V-based FPGA SoC
- Revamping entire TF Lite Micro CI to use Renode
- CI for Zephyr integration also in scope
- Additional work around Google Colab and demonstration of camera/audio enabled demos
WE CAN HELP YOU

- Build CI-driven and measurable TinyML pipelines
- Implement practical ML scenarios - open HW, SW as well as FPGA IPs (and tools)
- Adopt new, RISC-V and FPGA based approaches to ML. HW-SW co-design
GETTING STARTED WITH RENODE

- **Packages** (.deb, .rpm, .pkg.tar.xz, .dmg)
- **Renode portable**
- **Docker**
- **Conda**
- **Build** from source
THANK YOU FOR YOUR ATTENTION!