OPEN SOURCE IN TEACHING RISC-V

Open Source in Education @ BCS-OSSG

Prof. Dr.-Ing. Stefan Wallentowitz

Fakultät für Informatik und Mathematik
About Me

▶ Professor at Munich University of Applied Sciences
About Me

- Professor at Munich University of Applied Sciences
 - Computer Architecture, Computer Engineering
About Me

- Professor at Munich University of Applied Sciences
 - Computer Architecture, Computer Engineering
 - Embedded Systems Security

Open Source in Teaching RISC-V – Open Source in Education @ BCS-OSSG
Prof. Dr.-Ing. Stefan Wallentowitz – Fakultät für Informatik und Mathematik
About Me

▶ Professor at Munich University of Applied Sciences
 ▶ Computer Architecture, Computer Engineering
 ▶ Embedded Systems Security
▶ Long-term open source silicon advocate
About Me

- Professor at Munich University of Applied Sciences
 - Computer Architecture, Computer Engineering
 - Embedded Systems Security
- Long-term open source silicon advocate
 - Director at Free and Open Source Silicon Foundation
About Me

▸ Professor at Munich University of Applied Sciences
 ▸ Computer Architecture, Computer Engineering
 ▸ Embedded Systems Security

▸ Long-term open source silicon advocate
 ▸ Director at Free and Open Source Silicon Foundation
 ▸ Contributor and Maintainer of many projects
About Me

- Professor at Munich University of Applied Sciences
 - Computer Architecture, Computer Engineering
 - Embedded Systems Security
- Long-term open source silicon advocate
 - Director at Free and Open Source Silicon Foundation
 - Contributor and Maintainer of many projects
- Active RISC-V community member
About Me

- Professor at Munich University of Applied Sciences
 - Computer Architecture, Computer Engineering
 - Embedded Systems Security
- Long-term open source silicon advocate
 - Director at Free and Open Source Silicon Foundation
 - Contributor and Maintainer of many projects
- Active RISC-V community member
 - Member of the board of RISC-V International
About Me

- Professor at Munich University of Applied Sciences
 - Computer Architecture, Computer Engineering
 - Embedded Systems Security
- Long-term open source silicon advocate
 - Director at Free and Open Source Silicon Foundation
 - Contributor and Maintainer of many projects
- Active RISC-V community member
 - Member of the board of RISC-V International
 - Chair of the "academia and education"
What is RISC-V?

- Open instruction set architecture (ISA)
What is RISC-V?

▶ Open instruction set architecture (ISA)
 ▶ ISA: Definition on how a processor and software interface each other
What is RISC-V?

- Open instruction set architecture (ISA)
 - ISA: Definition on how a processor and software interface each other
 - ISAs are generally proprietary with few exceptions
What is RISC-V?

- Open instruction set architecture (ISA)
 - ISA: Definition on how a processor and software interface each other
 - ISAs are generally proprietary with few exceptions
- RISC-V: Started out of UC Berkeley (Krste Asanovic’ team)
What is RISC-V?

▶ Open instruction set architecture (ISA)
 ▶ ISA: Definition on how a processor and software interface each other
 ▶ ISAs are generally proprietary with few exceptions
▶ RISC-V: Started out of UC Berkeley (Krste Asanovic’ team)
▶ Now organized in a non-profit
What is RISC-V?

- Open instruction set architecture (ISA)
 - ISA: Definition on how a processor and software interface each other
 - ISAs are generally proprietary with few exceptions
- RISC-V: Started out of UC Berkeley (Krste Asanovic’ team)
- Now organized in a non-profit
 - Hundreds of members from large semiconductor companies to startups, academia and individuals
What is RISC-V?

▶ Open instruction set architecture (ISA)
 ▶ ISA: Definition on how a processor and software interface each other
 ▶ ISAs are generally proprietary with few exceptions
▶ RISC-V: Started out of UC Berkeley (Krste Asanovic’ team)
▶ Now organized in a non-profit
 ▶ Hundreds of members from large semiconductor companies to startups, academia and individuals
▶ Great for teaching computer organization and computer architecture, right?!
Opportunities & Challenges

▶ Opportunities

▶ Many open source processor cores
▶ Rich software ecosystem and active community
▶ All I need, right?

▶ Challenges

▶ Teaching practically oriented to computer science students
▶ Students have virtually no background in digital design
▶ Simulators and hardware emulation not really accessible (and fancy) to students

Goal: Reuse, improve and provide open source tooling for this purpose
Opportunities & Challenges

▶ Opportunities

▶ Many open source processor cores
Opportunities & Challenges

▶ Opportunities

▶ Many open source processor cores
▶ Rich software ecosystem and active community

▶ Challenges

▶ Teaching practically oriented to computer science students
▶ Students have virtually no background in digital design
▶ Simulators and hardware emulation not really accessible (and fancy) to students

Goal: Reuse, improve and provide open source tooling for this purpose
Opportunities & Challenges

▶ Opportunities

▶ Many open source processor cores
▶ Rich software ecosystem and active community
▶ All I need, right?

▶ Challenges

▶ Teaching practically oriented to computer science students
▶ Students have virtually no background in digital design
▶ Simulators and hardware emulation not really accessible (and fancy) to students

Goal: Reuse, improve and provide open source tooling for this purpose
Opportunities & Challenges

▶ Opportunities
 ▶ Many open source processor cores
 ▶ Rich software ecosystem and active community
 ▶ All I need, right?

▶ Challenges
Opportunities & Challenges

▶ **Opportunities**
 - Many open source processor cores
 - Rich software ecosystem and active community
 - All I need, right?

▶ **Challenges**
 - Teaching *practically oriented* to *computer science* students
Opportunities & Challenges

▶ Opportunities
 ▶ Many open source processor cores
 ▶ Rich software ecosystem and active community
 ▶ All I need, right?

▶ Challenges
 ▶ Teaching *practically oriented to computer science* students
 ▶ Students have virtually no background in digital design
Opportunities & Challenges

▶ **Opportunities**
 - Many open source processor cores
 - Rich software ecosystem and active community
 - All I need, right?

▶ **Challenges**
 - Teaching *practically oriented* to computer science students
 - Students have virtually no background in digital design
 - Simulators and hardware emulation not really accessible (and fancy) to students
Opportunities & Challenges

▶ Opportunities
 ▶ Many open source processor cores
 ▶ Rich software ecosystem and active community
 ▶ All I need, right?

▶ Challenges
 ▶ Teaching *practically oriented* to computer science students
 ▶ Students have virtually no background in digital design
 ▶ Simulators and hardware emulation not really accessible (and fancy) to students

▶ Goal: Reuse, improve and provide open source tooling for this purpose
Practical Computer Systems Education with Visual Studio

▶ RISC-V is ideal for computer system fundamental education
Practical Computer Systems Education with Visual Studio

- RISC-V is ideal for computer system fundamental education
 - Basic, straight-forward and modular instruction set
Practical Computer Systems Education with Visual Studio

▶ RISC-V is ideal for computer system fundamental education
 ▶ Basic, straight-forward and modular instruction set
 ▶ Broad range of available simulators and tools
Practical Computer Systems Education with Visual Studio

- RISC-V is ideal for computer system fundamental education
 - Basic, straight-forward and modular instruction set
 - Broad range of available simulators and tools
- Practical: Self-contained Visual Studio Code Extension
Practical Computer Systems Education with Visual Studio

- RISC-V is ideal for computer system fundamental education
 - Basic, straight-forward and modular instruction set
 - Broad range of available simulators and tools
- Practical: Self-contained Visual Studio Code Extension
 - Simulator backend based on Venus JS Simulator
Practical Computer Systems Education with Visual Studio

▶ RISC-V is ideal for computer system fundamental education
 ▶ Basic, straight-forward and modular instruction set
 ▶ Broad range of available simulators and tools

▶ Practical: Self-contained Visual Studio Code Extension
 ▶ Simulator backend based on Venus JS Simulator
 ▶ Debugging facilities fully integrated with VS Code
Practical Computer Systems Education with Visual Studio

- RISC-V is ideal for computer system fundamental education
 - Basic, straight-forward and modular instruction set
 - Broad range of available simulators and tools
- Practical: Self-contained Visual Studio Code Extension
 - Simulator backend based on Venus JS Simulator
 - Debugging facilities fully integrated with VS Code
 - Open source and easy to extend
Demo
Practical Computer Architecture Education with µArch Traces

- RISC-V is ideal for education of computer Architecture
Practical Computer Architecture Education with μArch Traces

- RISC-V is ideal for education of computer Architecture
 - Clear architecture eases fundamental education
Practical Computer Architecture Education with µArch Traces

- RISC-V is ideal for education of computer Architecture
 - Clear architecture eases fundamental education
 - Many open source processor cores: See it in action

Open Source in Teaching RISC-V – Open Source in Education @ BCS-OSSG
Prof. Dr.-Ing. Stefan Wallentowitz – Fakultät für Informatik und Mathematik
Practical Computer Architecture Education with µArch Traces

- RISC-V is ideal for education of computer Architecture
 - Clear architecture eases fundamental education
 - Many open source processor cores: See it in action
- Practical: Framework for microarchitecture tracing
Practical Computer Architecture Education with µArch Traces

► RISC-V is ideal for education of computer Architecture
 ► Clear architecture eases fundamental education
 ► Many open source processor cores: See it in action
► Practical: Framework for microarchitecture tracing
 ► Use open source processor cores as Verilator models

Open Source in Teaching RISC-V – Open Source in Education @ BCS-OSSG
Prof. Dr.-Ing. Stefan Wallentowitz – Fakultät für Informatik und Mathematik
Practical Computer Architecture Education with µArch Traces

- RISC-V is ideal for education of computer Architecture
 - Clear architecture eases fundamental education
 - Many open source processor cores: See it in action
- Practical: Framework for microarchitecture tracing
 - Use open source processor cores as Verilator models
 - Abstract from signals, tap them instead and trace microarchitecture events

Open Source in Teaching RISC-V – Open Source in Education @ BCS-OSSG
Prof. Dr.-Ing. Stefan Wallentowitz – Fakultät für Informatik und Mathematik
Practical Computer Architecture Education with µArch Traces

- RISC-V is ideal for education of computer Architecture
 - Clear architecture eases fundamental education
 - Many open source processor cores: See it in action
- Practical: Framework for microarchitecture tracing
 - Use open source processor cores as Verilator models
 - Abstract from signals, tap them instead and trace microarchitecture events
 - Visualization with pipeline viewer tool

Open Source in Teaching RISC-V – Open Source in Education @ BCS-OSSG
Prof. Dr.-Ing. Stefan Wallentowitz – Fakultät für Informatik und Mathematik
Practical Computer Architecture Education with µArch Traces

- RISC-V is ideal for education of computer Architecture
 - Clear architecture eases fundamental education
 - Many open source processor cores: See it in action
- Practical: Framework for microarchitecture tracing
 - Use open source processor cores as Verilator models
 - Abstract from signals, tap them instead and trace microarchitecture events
 - Visualization with pipeline viewer tool
 - All open source

Open Source in Teaching RISC-V – Open Source in Education @ BCS-OSSG
Prof. Dr.-Ing. Stefan Wallentowitz – Fakultät für Informatik und Mathematik
Practical Computer Architecture Education with µArch Traces

▶ RISC-V is ideal for education of computer Architecture
 ▶ Clear architecture eases fundamental education
 ▶ Many open source processor cores: See it in action

▶ Practical: Framework for microarchitecture tracing
 ▶ Use open source processor cores as Verilator models
 ▶ Abstract from signals, tap them instead and trace microarchitecture events
 ▶ Visualization with pipeline viewer tool
 ▶ All open source

Demo

Testbench

Core

μarch Tracer (DPI)

Trace File

Pipeline Viewer

pip install pipeline-viewer

Figure 1:
RISC-V Academia and Education SIG

- Special interest group to coordinate efforts
RISC-V Academia and Education SIG

▶ Special interest group to coordinate efforts
▶ Research collaboration
RISC-V Academia and Education SIG

- Special interest group to coordinate efforts
 - Research collaboration
 - Educational materials

RISC-V Academia and Education SIG

- Special interest group to coordinate efforts
 - Research collaboration
 - Educational materials
- Newly reformed group, growth phase of academic interest

RISC-V Academia and Education SIG

- Special interest group to coordinate efforts
 - Research collaboration
 - Educational materials
- Newly reformed group, growth phase of academic interest
- Currently only visible to RISC-V members, probably change that

Next meeting: Nov 2023, GMT
RISC-V Academia and Education SIG

- Special interest group to coordinate efforts
 - Research collaboration
 - Educational materials
- Newly reformed group, growth phase of academic interest
- Currently only visible to RISC-V members, probably change that
- Next meeting: Nov 26, 16:00 GMT
RISC-V Academia and Education SIG

- Special interest group to coordinate efforts
 - Research collaboration
 - Educational materials
- Newly reformed group, growth phase of academic interest
- Currently only visible to RISC-V members, probably change that
- Next meeting: Nov 26, 16:00 GMT
Ongoing Effort to Build Library of Educational Materials

► You can find many university courses that use RISC-V on the website

RISC-V Educational Materials

These materials are curated by educators around the world. You can add to this list by submitting entries via pull request on GitHub. Please contact us if you have any concerns or questions.

<table>
<thead>
<tr>
<th>Author/University</th>
<th>Link</th>
<th>Access</th>
<th>Level</th>
<th>Platform</th>
<th>Content</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia</td>
<td>Link</td>
<td>Open</td>
<td>2</td>
<td>Sim</td>
<td>HW</td>
<td>?</td>
</tr>
<tr>
<td>Stanford University</td>
<td>Link</td>
<td>Open</td>
<td>2</td>
<td>Sim</td>
<td>HW</td>
<td>?</td>
</tr>
<tr>
<td>University of California</td>
<td>Link</td>
<td>Open</td>
<td>2</td>
<td>Sim</td>
<td>HW</td>
<td>?</td>
</tr>
<tr>
<td>University of Wisconsin</td>
<td>Link</td>
<td>Open</td>
<td>2</td>
<td>Sim</td>
<td>HW</td>
<td>?</td>
</tr>
<tr>
<td>Saint Lawrence College</td>
<td>Link</td>
<td>Open</td>
<td>2</td>
<td>Sim</td>
<td>HW</td>
<td>?</td>
</tr>
<tr>
<td>University of Michigan</td>
<td>Link</td>
<td>Open</td>
<td>2</td>
<td>Sim</td>
<td>HW</td>
<td>?</td>
</tr>
<tr>
<td>UC Irvine</td>
<td>Link</td>
<td>Open</td>
<td>2</td>
<td>Sim</td>
<td>HW</td>
<td>?</td>
</tr>
</tbody>
</table>

Open Source in Teaching RISC-V – Open Source in Education @ BCS-OSSG
Prof. Dr.-Ing. Stefan Wallentowitz – Fakultät für Informatik und Mathematik
Ongoing Effort to Build Library of Educational Materials

- You can find many university courses that use RISC-V on the website
- Currently reworking appearance and emphasize reusability
Ongoing Effort to Build Library of Educational Materials

- You can find many university courses that use RISC-V on the website
- Currently reworking appearance and emphasize reusability
- Goal: Platform for educational materials
Thanks for your Attention!

More on https://riscv.cs.hm.edu

Find me on Twitter: @wallento