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Task |: Function approximation

Function f(x, w*)

X input vector
w unknown parameter vector

Goal:
» To find an appropriate function
» To find unknown parameter

Such that a cost function [commonly an error function such as Root Mean
Squared Error (RMSE or Error rate)] is reduced.
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Task Il: Feature selection

Feature set Z={z1,22,...,2p}

z; I-th feature

Goal:
To find an appropriate set of features Z*.

Such that a cost function (commonly an error function
such as RMSE/Error rate) is reduced.
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Machine learning objectives

» Create a model to fit data

» Optimize model for effectiveness:

> to adapt the topology and learning parameters,
which could lead to a low approximation error and a less complex model.

» Enabling adaptation:
> simultaneous feature selection and function approximation.

» Validate the models:
> select benchmark datasets and two industrial problems.
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Feedforward neural network (FNN)

Woig}? active node

FNN components:
» Weights
Architecture

Learning algorithms
Inputs

>
» Activation functions
>
>

input layer hidden layer output layer
Three layered feedforward neural network (FNN)
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Neural network optimization spectrum

Architecture
Optimization

a2
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Neural network optimization spectrum

Architecture
Optimization
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Heterogeneous Flexible (Adaptive) Neural Trees (HFNT)

Depth-first search computation

Typical tree-like structure Typical computational [neural]
node
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Neural tree construction: Two-phase learning

Structure learning

Algorithms: Multiobjective genetic programming
Operators: (Crossover and mutation)

Objectives: Tree size, Approximation error, diversity.

Parameter tuning
Differential evolution (or any other meta-heuristic algorithm)
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Tree construction: Two-phase learning

START Fittest solution
‘ w* = fittest(W°)
Phase 1: ¥
™ Multiobjective Genetic| o Wi = MHoperaor (W7)
Programming 1
' W = fittest(W'*1)
Phase II: Differential :
Evolution algorithm

topping criteria

STOP

General two phase optimization : Metaheusitic basic framework
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Advantage of multiobjective (1)
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Advantage of multiobjective (2)
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Neural tree (HFNT) performance evaluation

» Classification problems (five datasets).
» Regression problems (five datasets).
» Time-series problems (two datasets).

» Industrial Case Study: pharmaceutical die-filling.
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Neural tree (HFNT) performance: classification

Friedman ranking test results over five data sets
Algorithm  Ranking

HFNT™ 1.0
HDT 2.5
FNT 25

Holm’s post-hoc test results (o« = 0.05)

i algorithm Zz P a/i Hypothesis
2 HDT 212132 0.033895 0.05 rejected
1 FNT 2.12132 0.033895 0.1 rejected
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Neural tree (HFNT) performance: regression

Friedman ranking test results over five data sets

Algorithm Ranking
HFNT" 1.5
METSK-HD®  2.75
LEL-TSK 3.25
LINEAR-LSM 3.5
MLP 4.5
ANFIS-SUB 55

Holm’s post-hoc test results (o« = 0.1)

i algorithm z p afi Hypothesis
5 ANFIS-SUB 3.023716  0.002497 0.02  rejected

4 MLP 2.267787 0.023342 0.025 rejected

3 LINEAR-LSM 1.511858 0.13057  0.033

2 LEL-TSK 1.322876 0.185877 0.05

1 METSK-HD®  0.944911 0.344704 0.1
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Neural tree (HFNT) performance: time-series
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Neural tree performance: pharmaceutical die-filling
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Input feature analysis

Two parameters:

> Selection rate A;: the rate of selection of an input feature set Z; ¢ Z within a
total of M experiments.
Selection rate: 0 < R; < 1.

» Predictability score F;: the predictability of an input feature set Z; € Z within a
total of M experiments.
Predictability score: 0 < P; < 1.
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Feature analysis results (die-filling problem)

Dr Varun Ojha, UoR

Selection rate and Predictability score of individual features

# Input Features set Selection
Rate

Predictability
Score

1 Z;=True density 0.55173
2 Z,=d50 0.62069
3 Zz=Granule size 1

4 Z,=Shoe speed 0.86207

0.541356
0.586262
1
0.92563
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Feature analysis results (die-filling problem)

Selection rate and Predictability score of input feature sets

# Input Feature set Selection Predictability
Rate Score

1 Z;=True density, d50, Granule size, Shoe speed 0.31035 0.969497

2 Z,=d50, Granule size, Shoe Speed 0.17242 0.941601

3 Z;= True density, Granule size, Shoe speed 0.13793 1

4 Z,= Granule size, Shoe speed 0.24138 0.979663

5 Zs= True density, d50, Granule size 0.10345 0.493741

6 Zs=d50, Granule size 0.03448 0.470451
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Activation function scores

Unipolar Sigmoid . 21

Bipolar Sigmoid e 23

Linear Tangent hyperbolic I 27

Linear Fermi " 3

Fermi Function T 53

Tangent hyperbolic I 67
Gaussian Function I — 67

0 10 20 30 40 50 60 70 80
Activation function score

Score 67 is the best performance and score 21 is the worst performance
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Fuzzy inference system (FIS)

—_ Rule-base : |
= Fuzzifier »|  Type -2 FIS takes : Defuzzifier =
: =9
g type-2 fuzzy set ry 45
...................... o
z 2
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_| Type-reducer

| Inference engine

Only for type -2 FIS

Typical fuzzy inference system (FIS)
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Fuzzy Inference Systems optimization spectrum
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Fuzzy Inference Systems optimization spectrum
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Fuzzy rules

IF-THEN rule of the form:

R':IF x; is A AND ... AND x,is AL, THEN y' is B'

Function B’ for type-1:

o
B =cy+ ) clx;, (1)
j=1
Function B’ for type-2:
B' = [ch — sh. Gy + ol + Y _[c} — s].¢| + s]]x;, (2)
j=1
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Type-1 and Type-2 membership function

1

membership value ()
secondary axis (u)

q S i G ; 10
primary axis (z) primary axis (z)
Type-1 membership function Interval Type-2 membership function
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Hierarchical fuzzy inference tree construction (HFIT)
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Rule formation at a node

Rules at a node:
> A node receives n inputs.
» Each input is allowed to have 2 fuzzy sets.
» Maximum rule formed at a node is 2".
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Fuzzy tree (HFIT) performance evaluation

1. Example 1: System identification

2. Example 2: Mackey-glass time series
3. Example 3: Abalone age prediction
4. Example 4: Box-Jenkins gas furnace

5. Example 5: PLGA dissolution rate prediction (Industrial Case Study)
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Fuzzy tree-HFIT (Type-1 Fuzzy tree) Performance

Example 1 Example 2 Example 3 Example 4
Algorithm RMSE | Algorithm  RMSE | Algorithm RMSE | Algorithm RMSE
SaFIN 0.012 | NNT1FW 0.055 | HS 3.16 T1-NFS  0.4074
SONFIN  0.0085 | AFRS 0.0256 | General  3.15 GNN-1 0.3114
T1HFITS 0.0043 | IFRS 0.0253 | CCL 2.65 GNN-2 0.2983
TIHFITM  0.0041 | HTS-FS1  0.0129 | Chen 2.59 TIHFITS 0.2455

HTS-FS2  0.0151 | TIHFITS 2126 | TIHFITM 0.2838
RBF-AFA  0.0128 | TIHFITM 2.348

HyFIS 0.01

D-FNN 0.008

SuPFuNIS 0.0057

TIHFITS  0.0122

TIHFITY  0.0119
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Fuzzy tree-HFIT (Type-2 fuzzy tree) performance

Example 1 Example 2 Example 3 Example 4
Algorithm RMSE | Algorithm RMSE | Algorithm RMSE* | Algorithm RMSE
T2TSKFNS  0.0324 | T2FLS 0.043 |RIT2NFS-WB 2.4047 |SEIT2FNN 0.269
T2FNN 0.0281 | T2FLS (TSK) 0.043 |McIT2FIS-UM 2.3481 |RIT2NFS-WB 0.353

SIT2FNN 0.0241 [NNT2FW 0.039 |SEIT2FNN  2.3388 |McIT2FIS-UM 0.314
RIT2NFS-WB 0.0151 | SEIT2FNN1 0.003 |McIT2FIS-US 2.3357 |McIT2FIS-US 0.318
MRI2NFS 0.0051 [SEIT2FNN2 0.005 |T2HFITS 2.1154 | T2HFITS 0.277
T2FLS-G 0.0379| T2HFITS 0.009 |T2HFITY 2.1275 | T2HFITV 0.284
SEIT2FNN  0.0022| T2HFITM 0.006
T2HFITS 0.0034
T2HFITM 0.0028

*training error
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Average performance of Fuzzy tree (HFIT) versions

Average performance of hierarchical fuzzy inference tree

Fuzzy tree-1  Fuzzy tree-2
Error Size Error  Size

Single Objective
Average 1.078 95.5 1.014 210.7

Multibjective
Average 1.086 55.1 0.997 148.9
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Fuzzy tree (HFIT) performance: PLGA dissolution rate prediction

PLGA Example : Test error (Type-2)
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Comparison between Neural tree and Fuzzy tree

» Approximation ability: Neural tree is better than Fuzzy tree.
> Feature selection ability: Fuzzy tree is better than Neural tree.
> Model size: Fuzzy tree is lighter than Neural tree.

> Interpretability: Fuzzy tree is interpretable and Neural tree is not.
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Conclusions

» Two computational models were developed for the simultaneous feature
selection and function approximation and adaptive learning.

» Performance analysis on of the Neural tree and Fuzzy tree models on
benchmark datasets reveled the proposed model’s competitiveness with
models chosen for comparison.

» Fuzzy tree and neural tree models are offer good results for the real-world
industrial problems (die-filing performance and PLGA drug dissolution
prediction).
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Thank You!
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