
Miguel Martínez

RAPIDS
GPU POWERED MACHINE LEARNING

WHAT IS RAPIDS

RAPIDS

RAPIDS
GPU Accelerated End-to-End Data Science

RAPIDS is a set of open source libraries for GPU accelerating
data preparation and machine learning.

OSS website: rapids.ai

GPU Memory

Data Preparation VisualizationModel Training

cuGraph
Graph Analytics

cuML
dask-cuML

Machine Learning

cuDF
dask-cuDF

Data Preparation

RAPIDS

RAPIDS LIBRARIES
cuDF

• GPU-accelerated lightweight in-GPU memory database
used for data preparation

• Accelerates loading, filtering, and manipulation of
data for model training data preparation

• Python drop-in Pandas replacement built on CUDA C++

cuML

• GPU accelerated traditional machine learning libraries
• XGBoost, PCA, Kalman, K-means, k-NN, DBScan, tSVD …

cuGRAPH

• Collection of graph analytics libraries.

HOW TO SETUP AND START USING RAPIDS

Cloud

HOW? DOWNLOAD AND DEPLOY

On-premises

Source available on GitHub | Container available on NGC and Docker Hub | Conda and PIP

NGC

https://github.com/rapidsai
https://ngc.nvidia.com

https://hub.docker.com/u/rapidsai

https://anaconda.org/rapidsai
https://pypi.org/project/cudf/
https://pypi.org/project/cuml/

Pascal GPU architecture or better
CUDA 9.2 or 10.0

Ubuntu 16.04 or 18.04

RUNNING RAPIDS CONTAINER IN THE CLOUD
A step-by-step installation guide (MS Azure)

1. Create a NC6s_v2 virtual machine instance on Microsoft Azure
Portal using NVIDIA GPU Cloud Image for Deep Learning and HPC
as image.

2. Start the virtual machine.

3. Connect to the virtual machine using the following command:
$ ssh -L 8080:localhost:8888 \

-L 8787:localhost:8787 \
username@public_ip_address

4. Pull the RAPIDS container from NGC. Run it.

$ docker pull nvcr.io/nvidia/rapidsai/rapidsai:cuda10.0-runtime-ubuntu18.04
$ docker run --runtime=nvidia \

--rm -it \
-p 8888:8888 \
-p 8787:8787 \
-p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai:cuda10.0-runtime-ubuntu18.04

5. Run JupyterLab:

(rapids)$ bash /rapids/notebooks/utils/start-jupyter.sh

6. Open your browser, and navigate to http://localhost:8080.

7. Navigate to:

• cuml folder for cuML IPython examples.

• mortgage folder for XGBoost IPython examples.

8. Enjoy!

RUNNING RAPIDS CONTAINER IN THE CLOUD
A step-by-step installation guide (AWS)

1. Create a p3.8xlarge machine instance on Amazon Web Services
using NVIDIA Volta Deep Learning AMI as image.

2. Start the virtual machine.

3. Connect to the virtual machine using the following command:
$ ssh -L 8080:localhost:8888 \

-L 8787:localhost:8787 \
ubuntu@public_ip_address

4. Pull the RAPIDS container from NGC. Run it.

$ docker pull nvcr.io/nvidia/rapidsai/rapidsai:cuda10.0-runtime-ubuntu18.04
$ docker run --runtime=nvidia \

--rm -it \
-p 8888:8888 \
-p 8787:8787 \
-p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai:cuda10.0-runtime-ubuntu18.04

5. Run JupyterLab:

(rapids)$ bash /rapids/notebooks/utils/start-jupyter.sh

6. Open your browser, and navigate to http://localhost:8080.

7. Navigate to:

• cuml folder for cuML IPython examples.
• mortgage folder for XGBoost IPython examples.

8. Enjoy!

HOW TO PORT EXISTING CODE

CPU vs GPU
PORTING EXISTING CODE

PCA

Principal Component Analysis (PCA)
…Now!Before…

Training results:
• CPU: 57.1 seconds
• GPU: 4.28 seconds

System: AWS p3.8xlarge
CPUs: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz, 32 vCPU cores, 244 GB RAM
GPU: Tesla V100 SXM2 16GB
Dataset: https://github.com/rapidsai/cuml/tree/master/python/notebooks/data

…Now!Before…
k-Nearest Neighbors (KNN)

CPU vs GPU
PORTING EXISTING CODE

KNN

Training results:
• CPU: ~9 minutes
• GPU: 1.12 seconds

System: AWS p3.8xlarge
CPUs: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz, 32 vCPU cores, 244 GB RAM
GPU: Tesla V100 SXM2 16GB
Dataset: https://github.com/rapidsai/cuml/tree/master/python/notebooks/data

TRAINING TIME COMPARISON
CPU vs GPU

The bigger the dataset is, the higher
the training performance difference is

between CPU and GPU.

Dataset size trained in 15 minutes.
CPU: ~130.000 rows.

GPU: ~5.900.000 rows.

Specs NC6s_vs

Cores
(Broadwell 2.6Ghz)

6

GPU 1 x P100

Memory 112 GB

Local Disk ~700 GB SSD

Network Azure Network

WHAT IS XGBOOST

XGBOOST

XGBoost is an implementation of gradient
boosted decision trees designed for speed
and performance.

Definition

It is a powerful tool for
solving classification and
regression problems in a
supervised learning setting.

Source: https://goo.gl/C6WKiF

Example of Decision Tree
PREDICT: WHO ENJOYS COMPUTER GAMES

Source: https://goo.gl/C6WKiF

Example of Using Ensembled Decision Trees
COMBINE TREES FOR STRONGER PREDICTIONS

Source: https://goo.gl/GWNdEm

Models fit to the Boston Housing Dataset.

Single Decision Tree vs Ensembled Decision Trees
TRAINED MODELS VISUALIZATION

WHY XGBoost

Winner of Caterpiller Kaggle Contest 2015
– Machinery component pricing

Winner of CERN Large Hadron Collider Kaggle Contest 2015
– Classification of rare particle decay phenomena

Winner of KDD Cup 2016
– Research institutions’ impact on the acceptance of submitted academic papers

Winner of ACM RecSys Challenge 2017
– Job posting recommendation

A STRONG HISTORY OF SUCCESS
On a Wide Range of Problems

WHICH ML ALGORITHM PERFORMS BEST
Average rank across 165 ML datasets

Source: https://goo.gl/aztMh2

Lower
Is

Better

WHY XGBOOST + RAPIDS

XGBoost:

Algorithm tuned for eXtreme performance and high efficiency

Multi-GPU and Multi-Node Support

RAPIDS:

End-to-end data science & analytics pipeline entirely on GPU

User-friendly Python interfaces

Faster results helps hyperparameter tuning

Relies on CUDA primitives, exposes parallelism and high-memory bandwidth

Multi-GPU, Multi-Node, Scalability
WHY RAPIDS WITH XGBOOST

BENCHMARKS

2.290

1.956

1.999

1.948

169

157

0 500 1.000 1.500 2.000 2.500

20 CPU Nodes

30 CPU Nodes

50 CPU Nodes

100 CPU Nodes

DGX-2

5x DGX-1

0 2.000 4.000 6.000 8.000 10.000

20 CPU Nodes

30 CPU Nodes

50 CPU Nodes

100 CPU Nodes

DGX-2

5x DGX-1

2.741

1.675

715

379

42

19

0 1.000 2.000 3.000

20 CPU Nodes

30 CPU Nodes

50 CPU Nodes

100 CPU Nodes

DGX-2

5x DGX-1

Benchmark

200GB CSV dataset; Data preparation
includes joins, variable transformations.

CPU Cluster Configuration

CPU nodes (61 GiB of memory, 8 vCPUs,
64-bit platform), Apache Spark

DGX Cluster Configuration

5x DGX-1 on InfiniBand network

Time in seconds — Shorter is better

cuDF (Load and Data Preparation) Data Conversion XGBoost

cuDF – Load and Data Prep cuML – XGBoost End-to-End

8,763

6,147

3,926

3,221

322

213

cuML Algorithms Available Now Q2-2019

XGBoost GBDT MGMN

XGBoost Random Forest MGMN

K-Means Clustering MG

K-Nearest Neighbors (KNN) MG

Principal Component Analysis (PCA) SG

Density-based Spatial Clustering of Applications with Noise (DBSCAN) SG

Truncated Singular Value Decomposition (tSVD) SG

Uniform Manifold Aproximation and Projection (UMAP) SG MG

Kalman Filters (KF) SG

Ordinary Least Squares Linear Regression (OLS) SG

Stochastic Gradient Descent (SGD) SG

Generalized Linear Model, including Logistic (GLM) MG

Time Series (Holts-Winters) SG

Autoregressive Integrated Moving Average (ARIMA) SG

Last updated 29.03.19

SG
Single GPU

MG
Multi-GPU

MGMN
Multi-GPU Multi-Node

cuML ROADMAP

LEARN MORE ABOUT RAPIDS

https://rapids.ai

CUDF
CODE SAMPLES

Create an empty DataFrame, and add a column. Create a DataFrame with two columns.

Load a CSV file into a GPU DataFrame. Use Pandas to load a CSV file, and copy its content into a GPU DataFrame.

LOADING DATA INTO A GPU DATAFRAME

Row slicing with column selection.

Find the mean and standard deviation of a column.

Change the data type of a column. Transform column values with a custom function.

Return the first three rows as a new DataFrame.

Count number of occurrences per value, and number of unique values.

WORKING WITH GPU DATAFRAMES

Row slicing with column selection.

Query the columns of a DataFrame with a boolean expression. Sort a column by its values.

Return the first ‘n’ rows ordered by ‘columns’ in ascending order.

Join columns with other DataFrame on index. Merge two DataFrames.

Group by column with aggregate function.

One-hot encoding.

QUERY, SORT, GROUP, JOIN, MERGE,
ONE-HOT ENCODING

SUMMARY

RAPIDS

GPU Accelerated Data Science

RAPIDS is a set of open source libraries
for GPU accelerating data preparation
and machine learning.

Visit www.rapids.ai

ONE MORE THING

MESSAGE TO
DATA SCIENTISTS

FIND A NEW ARGUMENT

