RAPIDS GPU POWERED MACHINE LEARNING

Miguel Martínez

WHAT IS RAPIDS

RAPIDS

GPU Accelerated End-to-End Data Science

RAPIDS is a set of open source libraries for GPU accelerating **data preparation** and **machine learning**.

OSS website: rapids.ai

RAPIDS LIBRARIES

cuDF

- GPU-accelerated lightweight in-GPU memory database used for data preparation
- Accelerates loading, filtering, and manipulation of data for model training data preparation
- Python drop-in Pandas replacement built on CUDA C++

cuML

- GPU accelerated traditional machine learning libraries
- XGBoost, PCA, Kalman, K-means, k-NN, DBScan, tSVD ...

cuGRAPH

• Collection of graph analytics libraries.

HOW TO SETUP AND START USING RAPIDS

HOW? DOWNLOAD AND DEPLOY

RUNNING RAPIDS CONTAINER IN THE CLOUD

A step-by-step installation guide (MS Azure)

- 1. Create a NC6s_v2 virtual machine instance on Microsoft Azure Portal using NVIDIA GPU Cloud Image for Deep Learning and HPC as image.
- 2. Start the virtual machine.
- 3. Connect to the virtual machine using the following command:
 - \$ ssh -L 8080:localhost:8888 \
 -L 8787:localhost:8787 \
 username@public_ip_address
- 4. Pull the RAPIDS container from NGC. Run it.

 $docker pull nvcr.io/nvidia/rapidsai/rapidsai:cuda10.0-runtime-ubuntu18.04 docker run --runtime=nvidia \$

--rm -it \ -p 8888:8888 \ -p 8787:8787 \ -p 8786:8786 \

nvcr.io/nvidia/rapidsai/rapidsai:cuda10.0-runtime-ubuntu18.04

- Run JupyterLab: (rapids)\$ bash /rapids/notebooks/utils/start-jupyter.sh
- 6. Open your browser, and navigate to <u>http://localhost:8080</u>.
- 7. Navigate to:
 - cuml folder for cuML IPython examples.
 - mortgage folder for XGBoost IPython examples.
- 8. Enjoy!

RUNNING RAPIDS CONTAINER IN THE CLOUD

A step-by-step installation guide (AWS)

- 1. Create a *p3.8xlarge* machine instance on Amazon Web Services using *NVIDIA Volta Deep Learning AMI* as image.
- 2. Start the virtual machine.
- 3. Connect to the virtual machine using the following command:
 - \$ ssh -L 8080:localhost:8888 \ -L 8787:localhost:8787 \ ubuntu@public_ip_address
- 4. Pull the RAPIDS container from NGC. Run it.

 $docker pull nvcr.io/nvidia/rapidsai/rapidsai:cuda10.0-runtime-ubuntu18.04 docker run --runtime=nvidia <math display="inline">\$

- --rm -it \ -p 8888:8888 \
- -p 8787:8787 \ -p 8786:8786 \
- nvcr.io/nvidia/rapidsai/rapidsai:cuda10.0-runtime-ubuntu18.04

- Run JupyterLab: (rapids)\$ bash /rapids/notebooks/utils/start-jupyter.sh
- 6. Open your browser, and navigate to <u>http://localhost:8080</u>.
- 7. Navigate to:
 - cuml folder for cuML IPython examples.
 - mortgage folder for XGBoost IPython examples.
- 8. Enjoy!

HOW TO PORT EXISTING CODE

CPU vs GPU PORTING EXISTING CODE PCA

Training results:

- CPU: 57.1 seconds
 - GPU: 4.28 seconds •

System: AWS p3.8xlarge CPUs: Intel(R) Xeon(R) CPU E5-2686 v4 © 2.30GHz, 32 vCPU cores, 244 GB RAM SPU: Tesla V100 SXW2 16GB Dataset: https://github.com/rapidsai/cuml/tree/master/python/notebooks/data

Principal Component Analysis (PCA)

Before...

Specific: Import CPU algorithm

[1]: from sklearn.decomposition import PCA

Common: Helper functions

[2]: # Timer, Load_data.. from helper import *

Common: Data loading and algo params

[3]: # Data Loading nrows = 2**22 ncols = 400

X = load_data(nrows, ncols)
print('data', X.shape)

Algorithm parameters
n_components = 8
whiten = False
random_state = 42
svd_solver = "full"

use mortgage data data (4194304, 400)

Common: Training

CPU times: user 9min 19s, sys: 2min 12s, total: 11min 32s Wall time: 57.1 s

...Now!

Specific: Import GPU algorithm

[1]: from cuml import PCA

Common: Helper functions

[2]: # Timer, Load_data... from helper import *

Common: Data loading and algo params

[3]: # Data Loading nrows = 2**22 ncols = 400

X = load_data(nrows, ncols)
print('data', X.shape)

Algorithm parameters
n_components = 10
whiten = False
random_state = 42
svd_solver = "full"

use mortgage data data (4194304, 400)

Specific: DataFrame from Pandas to cuDF

[5]:

[4]: %%time import cudf X = cudf.DataFrame.from_pandas(X) CPU times: user 4.46 s, sys: 4.68 s, total: 9.14 s Wall time: 9.36 s

Common: Training

XXtime
pca = PCA(n_components=n_components.svd_solver=svd_solver,
 whiten=whiten, random_state=random_state)
 _ = pca.fit_transform(X) CPU times: user 1.94 s, sys: 512 ms, total: 2.45 s Wall time: 4.28 s

CPU vs GPU PORTING EXISTING CODE **KNN**

k-Nearest Neighbors (KNN)

Before...

Specific: Import CPU algorithm

[1]: from sklearn.neighbors import KDTree as KNN

Common: Helper functions

[2]: # Timer, Load_data... from helper import *

Common: Data loading and algo params

[3]: # Data Loading nrows = 2**17 ncols = 40

X = load_data(nrows, ncols)
print('data', X.shape)

Algorithm parameters
n_neighbors = 10 use mortgage data data (131072, 40)

Specific: Training

CPU times: user 9min 2s, sys: 272 ms, total: 9min 2s Wall time: 8min 59s

...Now!

Specific: Import GPU algorithm

[1]: from cuml import KNN

Common: Helper functions

Timer, Load_data...
from helper import *

Common: Data loading and algo params

[3]: # Data Loading nrows = 2**17 ncols = 40

X = load_data(nrows, ncols)
print('data', X.shape)

Algorithm parameters
n_neighbors = 10 use mortgage data data (131072, 40)

Specific: DataFrame from Pandas to cuDF

[4]: %%time import cudf
X = cudf.DataFrame.from_pandas(X) CPU times: user 3 s, sys: 552 ms, total: 3.56 s Wall time: 839 ms

Specific: Training

[5]: %%time knn = KNN(n_gpus=1) knn.fit(X) _ = knn.query(X, n_neighbors) CPU times: user 692 ms, sys: 428 ms, total: 1.12 s Wall time: 1.12 s

TRAINING TIME COMPARISON

CPU vs GPU

10,000.00 Training time in seconds 1.000.00 = CPU GPL 10.00 1.00 16,384 32,768 131,072 262,144 1,194,304 524,288 ,097,152 .,048,576 388.606 Dataset size in rows

k-nearest neighbors CPU vs GPU

Dataset size trained in 15 minutes. CPU: ~130.000 rows. GPU: ~5.900.000 rows.

Specs	NC6s_vs
Cores (Broadwell 2.6Ghz)	6
GPU	1 x P100
Memory	112 GB
Local Disk	~700 GB SSD
Network	Azure Network

The bigger the dataset is, the higher the training performance difference is between CPU and GPU.

WHAT IS XGBOOST

Definition

XGBoost is an implementation of gradient boosted decision trees designed for speed and performance.

What 711

It is a powerful tool for solving classification and regression problems in a supervised learning setting.

PREDICT: WHO ENJOYS COMPUTER GAMES

Example of Decision Tree

Source: https://goo.gl/C6WKiF

COMBINE TREES FOR STRONGER PREDICTIONS

Example of Using Ensembled Decision Trees

Source: https://goo.gl/C6WKiF

TRAINED MODELS VISUALIZATION

Single Decision Tree vs Ensembled Decision Trees

Models fit to the Boston Housing Dataset.

Source: https://goo.gl/GWNdEm

WHY XGBoost

A STRONG HISTORY OF SUCCESS

On a Wide Range of Problems

Winner of Caterpiller Kaggle Contest 2015 🟆

Machinery component pricing

Winner of CERN Large Hadron Collider Kaggle Contest 2015 🖤

Classification of rare particle decay phenomena

Winner of KDD Cup 2016 🟆

Research institutions' impact on the acceptance of submitted academic papers

Winner of ACM RecSys Challenge 2017 陳

Job posting recommendation

WHICH ML ALGORITHM PERFORMS BEST

Average rank across 165 ML datasets

Source: https://goo.gl/aztMh2

WHY XGBOOST + RAPIDS

WHY RAPIDS WITH XGBOOST

Multi-GPU, Multi-Node, Scalability

- XGBoost:
 - Algorithm tuned for eXtreme performance and high efficiency
 - Multi-GPU and Multi-Node Support
- RAPIDS:
 - End-to-end data science & analytics pipeline entirely on GPU
 - User-friendly Python interfaces
 - Faster results helps hyperparameter tuning
 - Relies on CUDA primitives, exposes parallelism and high-memory bandwidth

BENCHMARKS

Benchmark

200GB CSV dataset; Data preparation includes joins, variable transformations.

CPU Cluster Configuration

CPU nodes (61 GiB of memory, 8 vCPUs, 64-bit platform), Apache Spark

DGX Cluster Configuration

5x DGX-1 on InfiniBand network

cuML ROADMAP

cuML Algorithms	Available Now	Q2-2019
XGBoost GBDT	MGMN	
XGBoost Random Forest		MGMN
K-Means Clustering	MG	
K-Nearest Neighbors (KNN)	MG	
Principal Component Analysis (PCA)	SG	
Density-based Spatial Clustering of Applications with Noise (DBSCAN)	SG	
Truncated Singular Value Decomposition (tSVD)	SG	
Uniform Manifold Aproximation and Projection (UMAP)	SG	MG
Kalman Filters (KF)	SG	
Ordinary Least Squares Linear Regression (OLS)	SG	
Stochastic Gradient Descent (SGD)	SG	
Generalized Linear Model, including Logistic (GLM)		MG
Time Series (Holts-Winters)		SG
Autoregressive Integrated Moving Average (ARIMA)		SG

SG Single GPU

MG Multi-GPU

MGMN Multi-GPU Multi-Node

Last updated 29.03.19

LEARN MORE ABOUT RAPIDS

CUDF CODE SAMPLES

LOADING DATA INTO A GPU DATAFRAME

Create an empty DataFrame, and add a column.	Create a DataFrame with two columns.
: import cudf	[2]: import cudf
<pre>gdf = cudf.DataFrame() gdf['my_column'] = [6, 7, 8] print(gdf)</pre>	<pre>gdf = cudf.DataFrame({'a': [3, 4, 5], 'b': [6, 7, 9]}) print(gdf)</pre>
my_column	b a
0 6	0 6 3
2 8	1 7 4 2 9 5
2 0	2 3 3
Load a CSV file into a GPU DataFrame.	Use Pandas to load a CSV file, and copy its content into a GPU DataFram
: import cudf	<pre>[4]: import pandas as pd import cudf</pre>
<pre>path = './apartments.csv'</pre>	
nemes [little] literated lengths are able been bothed	# Load a CSV file using pandas.
<pre>names = ['city', 'zipcode', 'price_per_m2', 'year_built',</pre>	<pre>pdf = pd.read_csv(path, delimiter=';')</pre>
	# Convert data types to ones supported by cudf.
<pre># Note: dtype detection is not yet supported.</pre>	<pre>pdf['city'] = pdf['city'].astype('category')</pre>
<pre>dtypes = ['category', 'int64', 'float64', 'float64',</pre>	<pre>pdf['date'] = pdf['date'].astype("datetime64[ms]")</pre>
	# Create a cudf dataframe from a pandas dataframe.
<pre>gdf = cudf.read_csv(path, names=names, dtype=dtypes, delimiter=';',</pre>	<pre>gdf = cudf.DataFrame.from_pandas(pdf)</pre>

WORKING WITH GPU DATAFRAMES

	Return the first three rows as a new DataFrame.	Row slicing with column selection.
[5]:	<pre>print(gdf.head(3))</pre>	<pre>[6]: print(gdf.loc[2:5, ['zipcode', 'year_built']])</pre>
	city zipcode price_per_m2 year_built population median_income date 0 espoo 2100 5444.022222 1985 4332 26167 2018-09-06T00:00:00.000 1 espoo 2130 3768.0 1972 5983 29579 2018-08-2010:00:00.000 2 espoo 2140 2770.0 1977 3689 29447 2018-12-19T00:00:00.000	2 2140 1977 3 2160 1990
	Find the mean and standard deviation of a column.	Count number of occurrences per value, and number of unique values.
[7]:	<pre>print(gdf['population'].mean()) print(gdf['population'].std())</pre>	<pre>[8]: print(gdf['city'].value_counts()) print(gdf['city'].unique_count()) # nunique() in pandas.</pre>
	8014.397849462365 4373.122998945762	helsinki 65 espoo 28 2
	Change the data type of a column.	Transform column values with a custom function.
[9]:	<pre>import numpy as np print('Median income dtype used to be:', gdf['median_income'].dtype) gdf['median_income'] = gdf['median_income'].astype(np.float64) print('Median income dtype is now:', gdf['median_income'].dtype)</pre>	<pre>[10]: def double_income(median_income): return 2*median_income gdf['median_income'] = gdf['median_income'].applymap(double_income)</pre>
	Median income dtype used to be: int64 Median income dtype is now: float64	print(gdf.head(2)) dat city zipcode price_per_m2 year_built population median_income dat 0 espoo 2100 5444.022222 1985 4332 52334.0 2018-09-06T00:00:00.00 1 espoo 2130 3768.0 1972 5983 59158.0 2018-08-20T00:00:00.00

QUERY, SORT, GROUP, JOIN, MERGE, ONE-HOT ENCODING

	Query the columns of a DataFrame with a boolean expression.		Sort a column by its values.	
[11]:	<pre>query = gdf.query("year_built < 1930") print(query.head(3))</pre>	[12]:	<pre>gdf = gdf.sort_values(by='population', ascending=False) print(gdf.head(3))</pre>	
	city zipcode price_per_m2 year_built population median_income date 30 helsinki 130 7916.0 1911 1536 56220.0 2019-02-17700:00:00.000 31 helsinki 140 7416.90555999999 1925 7817 55194.0 2018-10-09700:00:00.000 32 helsinki 140 7714290000005 1907 9299 49734.0 2018-09-29700:00:00.000		city zipcode price_per_m2 year_built population median_income date 89 helsinki 940 1982.028571 1967 25817 38172.0 2019-02-10T00:00:00:00:00:00 8 espoo 2230 4035.075 1992 20397 46148.0 2018-12-09T00:00:00:00:00:00 58 helsinki 530 5090.853659 1944 18663 42582.0 2018-10-03T00:00:00:00:00:00	
	Return the first 'n' rows ordered by 'columns' in ascending order.		Group by column with aggregate function.	
[13]:	<pre>three_smallest = gdf.nsmallest(n=3, columns=['population']) print(three_smallest)</pre>	[14]:	<pre># Differences to pandas: # - aggregated column names are prefixed with the """"""""""""""""""""""""""""""""""""</pre>	
	city zipcode price_per_m2 year_built population median_income date 41 helsinki 310 3971.0 1972 896 46688.0 2018-10-05T00:00:00.000 30 helsinki 130 7916.0 1911 1536 56220.0 2019-21.7700:00:00.000 44 helsinki 340 4497.333333 1973 1654 64768.0 2018-11-2070:00:00:00:000.000	9	<pre># aggregated function name. # - 'city' becomes index in pandas but not in cudf. grouped = gdf.groupby(['city']).agg({'zipcode': 'count'})</pre>	
	Join columns with other DataFrame on index.		Merge two DataFrames.	
[15]:	<pre>left = grouped right = cudf.DataFrame({'zipcode': [28, 65], 'feature1': [1,2]})</pre>	[16]:	<pre># Only inner join is supported currently. merged = left.merge(right, on=['zipcode'])</pre>	
	# join() uses the index.		One-hot encoding.	
	<pre>join_left = left.set_index('count_zipcode') join_right = right.set_index('zipcode')</pre>	[17]:	<pre>gdf['city_codes'] = gdf.city.cat.codes codes = gdf.city codes.unique()</pre>	
	<pre># Different join styles are supported. joined = join_left.join(join_right, how='right')</pre>		<pre># get_dummies() in pandas. encoded = gdf.one hot encoding(column='city codes', cats=codes,</pre>	
			<pre>prefix='city_codes_dummy', dtype='int8')</pre>	

SUMMARY

GPU Accelerated Data Science

RAPIDS is a set of open source libraries for GPU accelerating **data preparation** and **machine learning.**

Visit <u>www.rapids.ai</u>

ONE MORE THING

FIND A NEW ARGUMENT

THE #1 DATA SCIENTIST EXCUSE FOR LEGITIMATELY SLACKING OFF:

"MY MODEL'S TRAINING . "

