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High-Performance Computing (HPC)

Definitions

� HPC: Field providing massive compute resources for a computational task

I Task needs too much memory or time for a normal computer
⇒ Enabler of complex scientific simulations, e.g., weather, astronomy

� Supercomputer: aggregates power of many compute devices

Example: Summit (Oak Ridge National Laboratories)

� Compute: 4,608 nodes; 2.4 Million core

I Peak 200 Petaflop/s (1015)
I 2x IBM POWER9 22C 3.07GHz; 6x NVIDIA Volta V100 GPU

� 10 PB memory (DRAM + HBM + GPU)

� Network: 100G Infiniband

� Storage: 32 PB capacity; 1 TB/s throughput
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Supercomputers & Data Centers

Node

Memory

Node

Memory

NVM

Memory HDD

S3

Cloud

EC2

HDDSSD HDDTape

...

Data center User

Internet

Credits: STFC

JASMIN Cluster at RAL / STFC
Used for data analysis of the Centre for
Environmental Data Analysis (CEDA)
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A View on The I/O Stack

� Parallel application

I Is distributed across many nodes
I Has a specific access pattern for I/O
I May use several interfaces

File (POSIX, ADIOS, HDF5), SQL, NoSQL

� Middleware provides high-level access

� POSIX: ultimately file system access

I Provides a hierarchical namespace and “file” interface

� Parallel file system: Lustre, GPFS, PVFS2

I Parallel: multiple processes can access data concurrently

� File system: EXT4, XFS, NTFS

� Operating system: (orthogonal aspect)
Example I/O stack

These layers provide plenty of optimization strategies and various tunables
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Challenges

� The I/O hardware/software stack is very complex – even for experts

� Achieving high performance

� Understanding observed behavior (and performance)

� Tuning system settings and configurations

� Limited performance portability – manual tuning

� Managing files and (data-intense) workflows

� Utilizing heterogenous storage landscapes

These are opportunities for tools and method development!

� Diagnosing causes, predicting performance, prescribing settings

� Smarter ways of data handling
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Research Activities & Interest

High-performance storage for HPC

� Efficient I/O

I Performance analysis methods, tools and benchmarks
I Optimizing parallel file systems and middleware
I Modeling of performance and costs
I Tuning of I/O: Prescribing settings
I Management of workflows

� Data reduction: compression library, algorithms, methods

� Interfaces: towards domain-specific solutions and novel interfaces

Other research interests

� Application of big data analytics (e.g., for humanities, medicince)

� Domain-specific languages (for Icosahedral climate models)

� Cost-efficiency for data centers in general
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Personal Vision: Towards Intelligent Storage Systems and Interfaces

Access paradigm
Database File system

Local storage

ILM/HSM Self-awareness
System characteristics

NoSQL    HDF5

Topology aware
Hierarchical storage

Performance model

Data replication

Semi-structured data

Content aware

Semantical access

Data transformation

Dynamic “on-disk” format

Intelligence Smart

Natural storage access
Data exploration

Semantical name space       Guided interface

Programmability

Data mining

Application focus U
ser

S
torage  system

Arbitrary views
� Abstract data interfaces

� Enhanced data management

� Integrate compute/storage engine

� Flexible views on data

� Smart hardware/storage

I Self-aware systems
I AI optimized placement
I Bring-your-own-behavior-model

� Cross sites and cloud
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I/O Modeling and Diagnosing Causes with Statistics

Problem
Assessing observed time for I/O is difficult:
What is the cause for the slow/fast operation?
What best-case performance can we expect?

Goal

� Estimate best performance, if optimizations would work as intended

� Predict likely reason/cause-of-effect by just analyzing runtime

Julian Kunkel Open Source AI Workshop, 02/2019 11 / 29



HPC & Storage Research Activities Performance Analysis Prediction/Prescribing with ML Next-Generation I/O + Compute Engines Summary

A Simple Performance Model for Extracting Knowledge

� Here: measured 408 different configurations applying two tunables

� Consider a performance prediction in three classes (fast, avg., slow)

� Rules extracted from decision trees (this is common sense for I/O experts)

I Small fill levels and data sizes are slow
I Large fill levels achieve good performance

� Surprising finding: smaller fill level, large access sizes are slower than medium

First three levels of the CART classifier rules for three classes slow, avg, fast ([0, 25], (25, 75], > 75 MB/s). The
dominant label is assigned to the leaf nodes – the probability for each class is provided in brackets.
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Towards Predicting Cause of Effect

Duration for sequential reads with 256 KiB accesses (off0 mem layout)

Issues

� Measuring the same operation repeatedly results in different runtime
� Reasons:

I Sometimes a certain optimization is triggered, shortening the I/O path
I Example strategies: read-ahead, write-behind; they depend on internal state

� Consequence: Non-linear access performance
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Write Operations

Results for one write run with sequential 256 KiB accesses (off0 mem layout).

Known optimizations for write

� Write-behind: cache data first in memory, then write back

� Write back is expected to be much slower

This behavior can be seen in the figure but is opaque to users and applications
Julian Kunkel Open Source AI Workshop, 02/2019 14 / 29



HPC & Storage Research Activities Performance Analysis Prediction/Prescribing with ML Next-Generation I/O + Compute Engines Summary

Towards Performance Models
Here are simple linear models for cached client side observations

Read models predicting caching and memory location.

Couldn’t machine learning or deep learning do better to identify the cause?
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Using the Linear Model to Identify Anomalies
Using the model, the figure for reverse access shows slow-down (by read-ahead)
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Prescriptive Analysis: Learning Best-Practises for DKRZ

� Performance benefit of I/O optimizations is non-trival to predict

� Example: Non-contiguous I/O supports data-sieving optimization

I Transforms non-sequential I/O to large contiguous I/O
I Tunable with hints: enabled/disabled, buffer size
I Benefit depends on system AND application

Requested data

Accessed data

Data 
sieving

File offset

I Data sieving is difficult to parameterize:
What should be recommended from a data center’s perspective?

Paper: Predicting Performance of Non-contiguous I/O with Machine Learning. Kunkel, Julian; Zimmer, Michaela; Betke, Eugen.
2015, Lecture Notes in Computer Science
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System-Wide Defaults

� Comparing a default choice with the best choice

� All default choices achieve 50-70% arithmethic mean performance

� Picking the best default for stripe count/size: 2 servers, 128 KiB

I 70% arithmetic mean performance
I 16% harmonic mean performance⇒ some bad choices result in very slow performance

Default Choice Best Worst Arithmethic Mean Harmonic Mean
Servers Stripe Sieving Freq. Freq. Rel. Abs. Loss Rel. Abs.

1 128 K Off 20 35 58.4% 200.1 102.1 9.0% 0.09
1 2 MiB Off 45 39 60.7% 261.5 103.7 9.0% 0.09
2 128K Off 87 76 69.8% 209.5 92.7 8.8% 0.09
2 2 MiB Off 81 14 72.1% 284.2 81.1 8.9% 0.09
1 128 K On 79 37 64.1% 245.6 56.7 15.2% 0.16
1 2 MiB On 11 75 59.4% 259.2 106.1 14.4% 0.15
2 128K On 80 58 68.7% 239.6 62.6 16.2% 0.17
2 2 MiB On 5 74 62.9% 258.0 107.3 14.9% 0.16

Performance achieved with any default choice
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Applying Machine Learning
� Building a classification tree with different depths

I Even small trees are much better than any default
I A tree of depth 4 is nearly optimal; avoids slow cases

Perf. difference between learned and best choices, by maximum tree depth, for DKRZ’s porting system
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Extraction of Knowledge From a tree

� For writes: Always use two servers; For holes below 128 KiB⇒ turn DS on, else off

� For reads: Holes below 200 KiB⇒ turn DS on

� Typically only one parameter changes between most frequent best choices

Decision tree with height 4. In the leaf nodes, the settings (Data sieving, server number, stripe size) and number of instances
for the two most frequent best choices

This produced similar knowledge as known by experts from data center
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Prescribing Compression Methods

� We are developing the Scientific Compression Library (SCIL)

I Separates concern of data accuracy and choice of algorithms
I Users specify necessary accuracy and performance parameters
I Metacompression library makes the choice of algorithms
I Supports also new algorithms

� Still unresolved question:
What metrics and algorithm to make best compression choice?

https://github.com/JulianKunkel/scil
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Ongoing Activity: Earth-Science Data Middleware

� Part of the ESiWACE Center of Excellence in H2020

I Centre of Excellence in Simulation of Weather and Climate in Europe

ESDM provides a transitional approach towards a vision for I/O addressing

� Scalable data management practice

� The inhomogeneous storage stack

� Suboptimal performance & performance portability

� Data conversion/merging
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Architecture

Key Concepts

� Middleware utilizes layout component to make placement decisions

� Applications work through existing API (currently: NetCDF library)

� Data is then written/read efficiently; potential for optimization inside library

NetCDFNetCDF ....

Layout component

User-level APIs

File system Object store ...

User-level APIs

Site-specific
back-ends
and

mapping

Data-type aware

file a file b file c obj a obj b

Site Internet
Archival

Canonical
Format
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Earth-System Data Middleware

Design Goals of the Earth-System Data Middleware

1 Relaxed access semantics, tailored to scientific data generation

2 Site-specific (optimized) data layout schemes

I Based on site-configuration and performance models
I Site-admin/project group defines mapping
I Flexible mapping of data to multiple storage backends
I Exploiting backends in the storage landscape

3 Enable a configurable namespace based on scientific metadata

We hope machine learning will make smarter choices
for data layouting and system parameters
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ESDM is just the Beginning: Next Generation Interfaces

Community Strategy via a Forum / Open Board
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Experts

Towards a new storage/compute stack (for data-flow processing)

� Higher-level semantics

I User metadata and workflows as first-class citizens
I Liquid-Computing enabling smart-computing and storage

� Smart hardware and software components with AI

I Self-aware instead of unconscious
I Improving over time (self-learning, hardware upgrades)

NG
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Summary

� Parallel I/O is complex

I System complexity and heterogeneity increases significantly
⇒ Expected and measured performance is difficult to assess
I Humans are unable to understand the behaviorial complexity of HPC systems
I HPC users (scientists) and data centers need methods and tools

� I believe AI and machine learning are key to overcome complexity and aid us

I Diagnosing causes and identify anomalies
I Predicting performance
I Prescribing best practices

� I work towards intelligent systems to increase insight and ease the burden for users

I Novel interfaces are needed to unleash the full potential of system resources

Visit!

� The Virtual Institute for I/O https://vi4io.org

� The IO-500 list http://io-500.org and https://ngi.vi4io.org

Julian Kunkel Open Source AI Workshop, 02/2019 29 / 29

https://vi4io.org
http://io-500.org
https://ngi.vi4io.org


Models Statistics Predicting Performance

Appendix

Julian Kunkel Open Source AI Workshop, 02/2019 30 / 29



Models Statistics Predicting Performance

Measured Data

� Simple single threaded benchmark, vary access granularity and hole size

� Captured on DKRZ porting system for Mistral

� Vary Lustre stripe settings

I 128 KiB or 2 MiB
I 1 stripe or 2 stripes

� Vary data sieving

I Off or On (4 MiB)

� Vary block and hole size (similar to before)

� 408 different configurations (up to 10 repeats each)

I Mean arithmetic performance is 245 MiB/s
I Mean can serve as baseline “model”
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Predicting Non-Contiguous I/O Performance
Goal: Predict storage performance based on several parameters and tunables

Alternative models

� Predict performance based on parameters

� Predict best (data sieving) settings

PM

Input

Buffer Size
Data Sieving
Data Size
Fill Level

Output

estimated Performance

Parameters

Buffer Size
Data Sieving
Data Size
Fill Level

Observed Values

Performance

train

(a) Performance Model

PSM
Input

Data Size
Fill Level

Output

best Buffer Size
best Data Sieving

Parameters

Buffer Size
Data Sieving
Data Size
Fill Level

Observed Values

Performance

train

(b) Parameter Setting Model

PM provides a perf. estimate, whereas PSM provides the “tunable” variable parameters to achieve it

Julian Kunkel Open Source AI Workshop, 02/2019 32 / 29



Models Statistics Predicting Performance

Validation on Data of the WR Cluster
� Apply k-fold cross-validation

I Split data into training set and validation set
I Train model with all (k-1) folds and evaluate it on 1 fold
I Repeat the process until all folds have been predicted

� A baseline model is the arithmethic mean performance (54.7 MiB/s)
I Achieves an arithmethic mean error of 28.5 MiB/s

� Linear models yield a mean error of ≥ 12.7 MiB/s

CART results

k
Performance errors in MB/s Class errors
min mean max min mean max

2 6.74 6.80 6.87 1.46 1.59 1.72
4 5.19 6.25 6.92 0.94 1.34 1.72
8 4.67 5.66 6.77 0.87 1.19 1.62

Prediction errors for training sets under k-fold cross-validation. Min & max refer to the folds’ mean error.
Values for k=3..7 lie in between
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Comparing Prediction with Observation

Performance classes and error for k=2, sorted by the observed performance class. Trained by 387 instances,
validated on the other 387 instances.
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Simulation of this Behavior

� Assume we have two components

I Component A is faster than B
I Either A or B transfer data
I Cache miss of A leads to transfer for B

� Overlaying 3 stochastic processes:

I Two gamma distributions with scale=1
I Normal distribution (little impact)

Resulting time for 1000 data points
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Simulated Access Time and Resulting Density

(a) Timeline (b) Density reveals two classes

Example demonstrating the methodology. Each of the two Gamma distributed processes is drawn with its own
color.
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Approach
Assumptions

� Each “class” is caused another optimization/technology

I Assign an observation to the likely class
I This may lead to (tolerable) errors

� Behavior not visible on the density plot is irrelevant

⇒ The strategy identifies relevant “performance factors”

Concept

1 Repeatedly measure time for I/O with a given size

2 Construct the density graph and identify clusters

3 A class is caused by (at least) one performance factor

4 Build a model to assign the cluster across “sizes“

5 Optional: Identify the root cause for the cluster

6 Assign appropriate names, e.g., “client-side cached”
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Approach: Models

� Apply a family of linear models predicting time; lm(size) = c+ f(size)

I Assume time correlates to the operation’s size
I Each model represents a condition C (cached, in L1, ...)
I tC(size) = lm(size) + lm′(size) + ... and check min(|tC − t̂|)

� Assume the conditions for the closest combination are the cause

� Ignore the fact of large I/O requests with mixed conditions

I i.e., some time of the operation may be caused by C and some by C′

Example models

� t(size) = m: Data is discarded on the client or overwritten in memory

� t(size) = m+ c(size): Data is completely cached on the client ...
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Transformation of the Problem

� Aim to apply alternative methods from machine learning

� Many require classification problems instead of regression

⇒ Performance values need to be mapped into classes

Mapping

� Create 10 classes with the same length up to 5% of max. performance

� Then increase performance range covered by 10% each

0 max
| | | | | | | | |

l = ε ◦ max

equal
size classes c

i+1
=c

i
(1+2ε)

|||| || ||||||| || ||
Val

relative size
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Evaluation Data

We analyzed the validity of the approach on two systems

System 1: WR cluster

� Lustre 2.5

� 10 server nodes

� 1 Gb Ethernet

� 1 client node (max performance 110 MiB/s)

System 2: DKRZ porting system

� Lustre 2.5 provided by Seagate ClusterStor 9000

� 2 servers

� FDR-Infiniband

� 1 client node (max performance 800 MiB/s)
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Investigating Training Set Size
� Inverse k-fold validation: learn from 1 fold and test on (k-1)

� With ≥ 96 instances better than the linear model

Mean prediction error of PM by training set size under inverse k-fold cross-validation. Class prediction errors
show similar behavior
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Model for Reading Cached Data

Model accuracy for reading cached data (off0 locality in memory and file). Other figures look similar
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Validation: Classify Different Patterns
Experiment cached discard uncached
state-mem-file off0 rnd off0 rnd
D-reverse-off0 R 46 54 0.3 0.03 0.004
C-off0-off0 R 0 34 60 6.1 0.29
C-seq-off0 R 0 0 52 47 0.31
C-seq-reverse R 0 0 42 4.3 54
C-seq-rnd8 R 0 0 30 44 26
C-seq-rnd R 0 0 26 5.6 68
C-seq-seq R 0 0 48 9.5 42
C-seq-stride8,8 R 0 0 28 8.8 63
C-off0-rnd R 0 2e-04 18 1.9 80
U-off0-rnd R 0 0 0.01 0.15 100
U-seq-seq R 0 0 57 6.1 37
C-off0-rnd W 0 0 0 0.003 100
C-off0-seq W W 0 0 40 17 42
C-seq-seq W 0 0 40 12 48
C-off0-reverse W 0 0 71 14 15

Model predictions classes in % of data points for selected memory & file locations – access size is varied.
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