

Who am I?

- Andy Hind Reformed academic?
 - Oracle
 - Alfresco
 - Campden BRI
 - University of Edinburgh Chemical Engineering
 - British Antarctic Survey

Agenda

- 1 Introduction
- Document Fingerprints
- Getting it into Lucene and SOLR
- 4 Vectors are interesting ...
- 5 The journey

New ideas appearing in Lucene/SOLR

- Learning to rank
 - RankNet 2005/LambdaMART 2010
 - SOLR 2015 (rerank 2014) Elastic 2017

New ideas appearing in Lucene/SOLR

- (b)kd trees
 - Paper 2003
 - Lucene 2015

Numeric Types in Lucene

Numeric Types in Lucene

Encoded Strings

Encode information in tokens

- Multi-lingual indexing
 - Encode locale/analysis chain … {en}woof
- Many fields
 - Encode field id woof:1
 - Salesforce Activate 2018

New ideas appearing in Lucene/SOLR

- Locality Sensitive Hashing & Minhash
 - AltaVista 1997
 - Lucene 2016/SOLR 2018

New ideas appearing in Lucene/SOLR

• PID control from the 1920s

Agenda

- 1 Introduction
- Document Fingerprints
- Getting it into Lucene and SOLR
- 4 Vectors are interesting ...
- 5 The journey

Document Fingerprints

- Document similarity
- "More like this"
 - SOLR term vectors
 - index is 7.8 x larger (http://blog.mikemccandless.com/2012/)
- 555
 - (Near) duplicates
 - Inclusion
 - Query expansion (recall)
 - Feature for LTR (precision)
 - Smaller

Document Fingerprints – LSH – Minhash

- Mining of Massive Datasets http://www.mmds.org
 - Chapter 3 "Finding Similar Items"
 - Jaccard similarity of documents BOW
 - Similarity does not have to be high to be significant
 - Character N-grams
 - Word Shingles
 - Minhash
 - Locality Sensitive Hashing approximate nearest neighbour search
 - Data dependent or independent

Document Fingerprints – LSH – Minhash - Timeline

- 1997 Andrei Broder AltaVista On the resemblance and containment of documents https://ieeexplore.ieee.org/document/666900
- 2012 Mining of Massive Datasets http://www.mmds.org
- 2014 Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search http://proceedings.mlr.press/v32/shrivastava14.pdf
- 2014 Review Locality Sensitive Hashing approximate nearest neighbor search. https://arxiv.org/abs/1408.2927
- 2016 https://issues.apache.org/jira/browse/LUCENE-6968

Document Fingerprints – LSH – Minhash

- Mining of Massive Datasets http://www.mmds.org
 - Chapter 3 "Finding Similar Items"
 - Jaccard similarity of documents BOW
 - Similarity does not have to be high to be significant
 - Character N-grams
 - Word Shingles
 - Minhash
 - Locality Sensitive Hashing approximate nearest neighbour search
 - https://arxiv.org/abs/1408.2927

5 word shingle

Document Fingerprints – LSH – Minhash

- Mining of Massive Datasets http://www.mmds.org
 - Chapter 3 "Finding Similar Items"
 - Jaccard similarity of documents BOW
 - Similarity does not have to be high to be significant
 - Character N-grams
 - Word Shingles
 - Minhash
 - Locality Sensitive Hashing approximate nearest neighbour search
 - https://arxiv.org/abs/1408.2927

5 word shingle

Document Fingerprints - Example

A

CMIS 1.0 5 word n-grams

The Content Management Interoperability Services (CMIS) standard defines a domain model and

Web Services and Restful AtomPub bindings that can be used by applications to work with one or

more Content Management repositories/systems.

The Content Management Interoperability Services (CMIS) standard defines a domain model and

Web Services, Restful AtomPub and browser (JSON) bindings that can be used by applications to

work with one or more Content Management repositories/systems.

$$C(B,A) = \frac{23}{32} \approx 72\%$$

$$J(A,B) = \frac{23}{39} \approx 59\%$$

Min Hash – set

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Min Hash – many hash functions

Min Hash – one hash with buckets

Min Hash – one hash with buckets + rotation

Min Hash – comparing hashes

Min Hash – comparing hashes – with banding

Agenda

- 1 Introduction
- Document Fingerprints
- **Getting it into Lucene and SOLR**
- 4 Vectors are interesting ...
- 5 The journey

Similar Documents

- Lucene
 - MinHashFilter
 - https://issues.apache.org/jira/browse/LUCENE-6968
 - -6 months

- SOLR
 - min_hash
 MinHashQParser
 - https://issues.apache.org/jira/browse/SOLR-12879
 - -3 days + a month to catch up on documentation

Similar Documents

- Analysed vs pre-analysed and stored
- Analysis chain
 - n-grams vs shingles etc
- Hashes, buckets, minimum set, rotation

Similarity

Examples

- Wikipedia articles
- 5 word shingles
- Pre-analysed and stored

- Aside
 - State in the index
 - Event sourcing/CQRS

Oracle Corporation

Page	Score	Normalised		
Oracle Corporation	512	1.000		
Oracle Cloud	9	0.018		
Oracle Cloud Platform	5	0.010		
Michelle K. Lee	5	0.010		
Paul Grewal	4	0.008		
Ultratech	4	0.008		

Oracle Cloud

Page	Score	Normalised		
Oracle Cloud	512	1.000		
Oracle Cloud Platform	148	0.289		
Oracle Corporation	17	0.033		
Microsoft Azure	10	0.020		
Recovery as a service	9	0.018		
SHI International Corp	8	0.016		
Cloud28+	8	0.016		
Content as a service	6	0.012		

Brexit

Page	Score	Normalised
Brexit	512	1.000
Brexit negotiations	30	0.059
Brexit in popular culture	22	0.043
History of European Union-United Kingdom relations	19	0.037
Economic effects of Brexit	11	0.021
European Parliament election, 2019	8	0.016
Aftermath of the United Kingdom European Union membership referendum, 2016	7	0.014
United Kingdom invocation of Article 50 of the Treaty on European Union	7	0.014

Scott Joplin

Page	Score	Normalised
Scott Joplin	512	1.000
Treemonisha	38	0.074
List of compositions by Scott Joplin	15	0.030
The Entertainer (rag)	15	0.030
Scott Joplin House State Historic Site	13	0.025
Scott Joplin: Piano Rags	13	0.025
Joshua Rifkin	7	0.014
Bethena	5	0.010

Stuff still to do ...

- New BKD type
- Normalised score
- Positions/Highlighting
 - Where was it similar?
- Hash size and collisions
- Rotation bug ...

Agenda

- 1 Introduction
- Document Fingerprints
- Getting it into Lucene and SOLR
- 4 Vectors are interesting ...
- 5 The journey

Vectors are interesting ...

- Dense Vectors
 - Embeddings
 - Post processing
- Approximate nearest neighbours
 - Locality Sensitive Hashing (LSH SimHash, spectral hashing, ...)
 - K-Means tree
 - Randomized KD forest
 - Vector to text encoding
 - Brute force

NLP

 NVIDIA DGX-1 Deep Learning System with 8x 32GB Tesla V100 Volta GPUs, 12nm, HBM2, 1 petaFLOP FP16 Performance

NLP

 NVIDIA DGX-1 Deep Learning System with 8x 32GB Tesla V100 Volta GPUs, 12nm, HBM2, 1 petaFLOP FP16 Performance

Vectors are interesting ...

- NLP and transfer learning
 - Sentence representations
 - NLP's image net moment?
 - Transfer learning needs less data
- Text vs images

Agenda

- 1 Introduction
- Document Fingerprints
- Getting it into Lucene and SOLR
- 4 Vectors are interesting ...
- 5 The journey

The Journey

- Papers ...
- Math vs application
- Implementation
- Scalability

 Performance Comparison of Learning to Rank Algorithms for Information Retrieval

TABLE I. PERFORMANCE COMPARISON BETWEEN BASE ALGORITHMS AND LEARNING TO RANK ALGHORITHMS

Algorithm	NDCG@10
TF*IDF	0.7051
BM25	0.7800
RankSVM	0.8087
LambdaMART	0.8092
AdditiveGroves	0.8165

https://pdfs.semanticscholar.org/cd12/e191d2c2790e5ed60e5186462e6f8027db1f.pdf

Deep Rank: A new deep architecture for Relevance Ranking in Information Retrieval (https://arxiv.org/abs/1710.05649)

MQ2008									
Model	NDCG@1	NDCG@3	NDCG@5	NDCG@10	P@1	P@3	P@5	P@10	MAP
BM25-TITLE	0.344	0.420^{-}	0.461	0.220-	0.408^{-}	0.381	0.337	0.245	0.465
RANKSVM	0.375	0.431	0.479-	0.229	0.441	0.390-	0.348	0.249	0.478
RankBoost	0.381	0.436^{-}	0.477^{-}	0.231	0.455	0.392^{-}	0.347^{-}	0.248	0.481^{-}
AdaRank	0.360^{-}	0.422^{-}	0.462^{-}	0.222	0.430^{-}	0.384^{-}	0.339^{-}	0.247^{-}	0.468^{-}
LambdaMart	0.378	0.437^{-}	0.477^{-}	0.231	0.446^{-}	0.398	0.348^{-}	0.251	0.478^{-}
DSSM	0.286	0.336	0.378-	0.178	0.341	0.307	0.284^{-}	0.221	0.391
CDSSM	0.283^{-}	0.331^{-}	0.376^{-}	0.175^{-}	0.335^{-}	0.302^{-}	0.279^{-}	0.222^{-}	0.395^{-}
Arc-I	0.295^{-}	0.363^{-}	0.413^{-}	0.187^{-}	0.361^{-}	0.336^{-}	0.311^{-}	0.229^{-}	0.424^{-}
SQA-noFeat	0.291^{-}	0.350^{-}	0.401^{-}	0.184^{-}	0.366^{-}	0.332^{-}	0.309^{-}	0.231^{-}	0.416^{-}
DRMM	0.368	0.427^{-}	0.468^{-}	0.220^{-}	0.437^{-}	0.392^{-}	0.344^{-}	0.245^{-}	0.473
Arc-II	0.299^{-}	0.340^{-}	0.394^{-}	0.181^{-}	0.366^{-}	0.326^{-}	0.305^{-}	0.229^{-}	0.413^{-}
МатснРугамір	0.351^{-}	0.401^{-}	0.442^{-}	0.211^{-}	0.408^{-}	0.365^{-}	0.329^{-}	0.239^{-}	0.449^{-}
MATCH-SRNN	0.369	0.426^{-}	0.465^{-}	0.223^{-}	0.432^{-}	0.383^{-}	0.335^{-}	0.239^{-}	0.466^{-}
DeepRank-2DGRU	0.391	0.436	0.480	0.236	0.462	0.395	0.354	0.252	0.489
DeepRank-CNN	0.406	0.460	0.496	0.240	0.482	0.412	0.359	0.252	0.498
SQA	0.402	0.454	0.493	0.236	0.485	0.411	0.362	0.254	0.496
DeepRank-CNN-Feat	0.418	0.475	0.507	0.248	0.497	0.422	0.366	0.255	0.508

A Dual Embedding Space Model for Document Ranking

	Expl	icitly Judged T	est Set	Implicit Feedback based Test Set			
	NDCG@1	NDCG@3	NDCG@10	NDCG@1	NDCG@3	NDCG@10	
BM25	21.44	26.09	37.53	11.68	22.14	33.19	
LSA	04.61*	04.63*	04.83*	01.97*	03.24*	04.54*	
DESM (IN-IN, trained on body text)	06.69*	06.80*	07.39*	03.39*	05.09*	07.13*	
DESM (IN-IN, trained on queries)	05.56*	05.59*	06.03*	02.62*	04.06*	05.92*	
DESM (IN-OUT, trained on body text)	01.01*	01.16*	01.58*	00.78*	01.12*	02.07*	
DESM (IN-OUT, trained on queries)	00.62*	00.58*	00.81*	00.29*	00.39*	01.36*	
BM25 + DESM (IN-IN, trained on body text)	21.53	26.16	37.48	11.96	22.58*	33.70*	
BM25 + DESM (IN-IN, trained on queries)	21.58	26.20	37.62	11.91	22.47*	33.72*	
BM25 + DESM (IN-OUT, trained on body text)	21.47	26.18	37.55	11.83	22.42*	33.60*	
BM25 + DESM (IN-OUT, trained on queries)	21.54	26.42*	37.86*	12.22*	22.96*	34.11*	

https://arxiv.org/abs/1602.01137

Learning a Deep Listwise Context Model for Ranking Refinement

			Microsoft Letor Dataset 30K							
Initial List	Model	Loss Function	nDCG@1 ERR@1 nDCG@3 ERR@3 nDCG@5 ERR@5 nDCG@10 ERR@1							ERR@10
LambdaMART		0.457+	0.235+	0.442+	0.314+	0.445+	0.336+	0.464+	0.355+	
		ListMLE	0.372	0.174	0.378	0.254	0.386	0.278	0.409	0.299
	DNN	SoftRank	0.384	0.209	0.373	0.281	0.378	0.302	0.397	0.321
		AttRank	0.388	0.199	0.386	0.274	0.393	0.297	0.416	0.317
	LIDNN	ListMLE	0.427+	0.219^{+}	0.427+	0.301+	0.435+	0.325+	0.455+	0.344+
LambdaMART		SoftRank	0.457+	0.234^{+}	0.442+	0.314+	0.445+	0.336+	0.464+	0.355+
		AttRank	0.455+	0.237+	0.432+	0.312+	0.436+	0.334+	0.458+	0.354+
	DLCM	ListMLE	0.457+	0.235+	0.442+	0.314+	0.445+	0.336+	0.464+	0.355+
		SoftRank	0.463*+‡	0.243*+‡	0.444*+‡	0.320*+‡	0.447*+‡	0.342*+‡	0.465*+‡	0.360*+‡
		AttRank	0.463*+‡	0.246*+‡	0.445*+‡	0.322*+‡	0.450*+‡	0.344*+‡	0.469*+‡	0.362*+‡

https://arxiv.org/pdf/1804.05936.pdf

 Balancing Speed and Quality in Online Learning to Rank for Information Retrieval https://arxiv.org/pdf/1711.09446.pdf

