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The European Centre for Medium-Range Weather
Forecasts (ECMWF)

www.ecmwf.int

I Research institute and 24/7 operational weather service for
medium-range, monthly and seasonal forecasts.

I Independent, intergovernmental organization supported by 34
states.

I Based close to Oxford in the UK; ≈ 350 member of staff.
I Home of two supercomputers.
I Home of the Integrated Forecast System (IFS).
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Predicting weather and climate: Why is it so hard?

www.gfdl.noaa.gov
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Predicting weather and climate: Why is it so hard?

Wehner and Prabhat
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Predicting weather and climate: Why is it so hard?

Bauer et al. Nature 2015

The Earth System is complex, huge and chaotic and we do not have
sufficient resolution to resolve all important processes.
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Predicting weather and climate: Why is it so hard?
Clouds in a global weather simulation at 1 km resolution.

Figure courtesy of Nils Wedi.

Global simulations show a breath-taking level of complexity and can
represent many details of the Earth System.
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Deep learning for weather and climate
The Earth System has many components that show non-linear

dynamics, we have plenty of observations and often need to apply
rough approximations to formulate our models.

www.wikipedia.org

I Neural Networks learn from input/output pairs.

I Neurons have weighted connections to each other and the
weights are trained to produce the optimal results.

Neural networks can emulate non-linear systems.
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Deep learning for weather and climate

Outline:

I Emulate existing model components.

I Improve existing model components.

I Learn the equations of motion.

I Improve post-processing.

I Use machine learning hardware.

I Challenges for deep learning in weather and climate models.
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Emulate existing model components
I Store input/output pairs of parametrisation schemes.

I Use this data to train a neural network to do the same job.

I Replace the parametrisation scheme by the neural network.

Why would you do this?

I A large fraction of the computational cost is generated by
parametrisation scheme.

I Parametrisation schemes cause > 90% of model code.

I Optimization of this code is very difficult
(→ less than 5% peak performance).

I Neural Networks are highly optimized and can even use
co-designed hardware.
→ Portability comes for free.

We hope that deep Neural Networks will be almost as good as the
original parametrisation schemes but much more efficient.
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Neural Networks to replace the radiation scheme at
ECMWF in the year 2000

I 20-30 hidden neurons.
I Trained on 80,000 vertical profiles.
I Accuracy of the new scheme was comparable.
I The new scheme was seven times faster.
I The network could be used to generate tangent linear and

adjoint code for 4DVar data assimilation.
I However, Neural Networks are currently not used in operational

models.

Chevallier et al. QJRMS 2000.
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A neural network emulator for the state-of-the-art
model configuration with 137 vertical levels

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

Monday 31 July 2017 12 UTC ecmf t+3 VT:Monday 31 July 2017 15 UTC surface  Surface solar radiation downwards
0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000 10000000 10140928

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

Monday 31 July 2017 12 UTC ecmf t+3 VT:Monday 31 July 2017 15 UTC surface  Surface solar radiation downwards
0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000 10000000 1.01303e+07

Progsch, Ko, Angerer @NVIDIA and Dueben, Hogan, Bauer @ECMWF

Downward solar radiation at the surface for the original radiation
scheme and the Neural Network emulator.

However, we still need to stabilize free-running model simulations
with the Neural Network and more work is required.
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A neural network emulator for gravity wave drag

Original scheme Difference Neural Network

Chantry, Abdelrahman, Desai, Dueben, Palem, Palmer.

Tendency output for the non-orographic gravity wave drag
parametrisation scheme for the standard scheme and a neural
network emulator.

Peter Düben Page 10



Deep learning for weather and climate

Outline:

I Emulate existing model components.

I Improve existing model components.

I Learn the equations of motion.

I Improve post-processing.

I Use machine learning hardware.

I Challenges for deep learning in weather and climate models.
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Lorenz’95 and parametrisation schemes:
A toy model as surrogate for the Earth System

Truth:
dXk

dt
= Xk−1

(
Xk+1 − Xk−2

)
− Xk + F −

hc

b

J∑
j=1

Yj,k

dYj,k

dt
= −cbYj+1,k

(
Yj+2,k − Yj−1,k

)
− cYj,k +

hc

b
Xk −

he

d

I∑
i=1

Zi,j,k

dZi,j,k

dt
= edZi−1,j,k

(
Zi+1,j,k − Zi−2,j,k

)
− gZ eZi,j,k +

he

d
Yj,k

Model:

dXk

dt
= Xk−1 (Xk+1 − Xk−2)− Xk + F + U(Xk )

I We use the three-level Lorenz’95 model (Thornes et al. QJRMS
2017) to study scale interactions in a non-linear environment.

I Three levels are the truth, one level is the model.
I To find the right parametrisation scheme is tricky

(U(Xk ) ≈ − hc
b

∑J
j=1 Yj,k ).
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Learn parametrisation schemes
Results from John Griffith

I We perform a long run with the Lorenz’95 truth and diagnose the
parametrisation term U = − hc

b

∑J
j=1 Yj,k .

I We train a Neural Network to learn U(Xk ) for the coarse
resolution model.

I We run a parametrised model using the trained U(Xk ) and
compare results against the conventional method to fit a
polynomial.
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Results are promising.
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Recent results for a superparametrised model

I Rasp, Pritchard and Gentine (arXiv 2018) have trained a Neural
Network to emulate the parametrisation schemes from a
superparametrised model.

I They could replicate the benefits of superparametrisation in
comparison to the standard model using a Neural Network that
was 10 times faster.
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Deep learning for weather and climate

Outline:
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I Learn the equations of motion.

I Improve post-processing.

I Use machine learning hardware.

I Challenges for deep learning in weather and climate models.
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We could base the entire model on Neural Networks.
Who needs Navier Stokes?

I We know the equations of motion but we cannot solve them.

I Discretisation and sub-grid-scale variability generates significant
errors.

I The data handling system of ECMWF provides access to over
210 petabyte of primary data and the data archive of ECMWF
grows by about 233 terabyte per day.

I Data assimilation for weather forecasts is very difficult.
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Global weather forecast based on Neural Networks
I Retrieve hourly data of geopotential height at 500 hPa from

ERA5 re-analysis for training (> 65000 global data sets).

I Map the data to a coarse lon/lat grid (60x31).

I Use the state of the model at timestep i as input and the state of
the model at timestep i + 1 as output.

I Use a 9× 9 stencil around the grid point that should be
predicted.

I Add time of day and year as well as the coordination of a
gridpoint (lon+lat) as input variables to the network.

I The Pole needs special treatment.
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Global weather forecast based on Neural Networks

The Neural Network model can compete with a dynamical model of
similar complexity.

Dueben and Bauer GMD 2018
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Global weather forecast based on Neural Networks
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The simulations show reasonable dynamics.

Just adding further inputs does not necessarily help.

Model runs crash after a couple of weeks.
Dueben and Bauer GMD 2018
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Global weather forecast based on Neural Networks
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Global weather forecast based on Neural Networks
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Global weather forecast based on Neural Networks
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Deep learning for weather and climate

Outline:

I Emulate existing model components.

I Improve existing model components.

I Learn the equations of motion.

I Improve post-processing.

I Use machine learning hardware.

I Challenges for deep learning in weather and climate models.
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Improve post-processing

Ensemble simulations are important but expensive.

We use one model trajectory, the ensemble mean and the ensemble
spread field at initialisation to predict the ensemble spread of a 10
member ensemble six hours into the forecast for an area over Europe
(40W-30E and 40N-60N).

Spread after 6 hours: Prediction from neural network:

Grönquist, Ben-Nun, Taranov, Höfler @ ETH and Dueben and Bauer @ ECMWF

Peter Düben Page 21



Improve post-processing

Ensemble simulations are important but expensive.

We use one model trajectory, the ensemble mean and the ensemble
spread field at initialisation to predict the ensemble spread of a 10
member ensemble six hours into the forecast for an area over Europe
(40W-30E and 40N-60N).

Spread after 6 hours: Prediction from neural network:

Grönquist, Ben-Nun, Taranov, Höfler @ ETH and Dueben and Bauer @ ECMWF

Peter Düben Page 21



Improve post-processing

Ensemble simulations are important but expensive.

We use one model trajectory, the ensemble mean and the ensemble
spread field at initialisation to predict the ensemble spread of a 10
member ensemble six hours into the forecast for an area over Europe
(40W-30E and 40N-60N).

Spread after 6 hours: Prediction from neural network:

Grönquist, Ben-Nun, Taranov, Höfler @ ETH and Dueben and Bauer @ ECMWF

Peter Düben Page 21



Deep learning for weather and climate

Outline:

I Emulate existing model components.

I Improve existing model components.

I Learn the equations of motion.

I Improve post-processing.

I Use machine learning hardware.

I Challenges for deep learning in weather and climate models.

Peter Düben Page 22



Use machine learning hardware
Relative cost for model components at 1.25 km for a spectral model:

The Legendre transforms are the killer (as expected). They are
standard matrix-matrix multiplications.

If we can re-scale the input and output fields, we can use half
precision arithmetic (low zonal wave numbers need to be secured).

Tensor Cores on NVIDIA Volta GPUs are optimized for half-precision
matrix-matrix calculations with single precision output. 7.8 TFlops for
double precision vs. 125 TFlops for half precision on the Tensor Core.
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Half precision Legendre Transformations
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over multiple start dates.
Hatfield, Chantry, Dueben, Palmer, submitted to PASC2019.

The simulations are using an emulator to reduce precision.
Dawson and Dueben GMD 2017
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Deep learning for weather and climate

Outline:

I Emulate existing model components.

I Improve existing model components.

I Learn the equations of motion.

I Improve post-processing.

I Use machine learning hardware.

I Challenges for deep learning in weather and climate
models.
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To improve a multi-dimensional, non-linear system...

You may need to run 100 years of a coupled climate model to identify
a response to a forcing...
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Challenges for deep learning
There is no fundamental reasons not to use a black box within
weather and climate models. However,...

I How can we use our knowledge about the Earth System?
I How can we diagnose physical knowledge from the network?
I How can we remove a bias from neural networks?
I How can we secure conservation laws?
I How can we hyper-parameters?
I How can we guarantee reproducibility during training?
I How can we get beyond “dense” networks but still take local

properties into account?
I How can we fix interactions between model components?
I How can we design good training data (short time steps and

high resolution)?
I How can we we explore the full phase space (all weather

regimes) during training?
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The way forward

I To study known differential equations to
learn how to derive blueprints for neural
network architectures.

I To study model source code to learn
how to derive blueprints for the design
of network architectures.

I To study the representation of
sub-grid-scale processes and
systematic errors for neural networks.

I To scale the application of neural
networks in W&C models beyond
today’s limits.

Weather and climate
models

Deep learning
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An example: The Burgers equation
Let’s represent a non-linear system that is approximated by the
Burgers’ equation:

∂u
∂t

= ν
∂2u
∂x2 − u

∂u
∂x

+ p.

The conventional approach:

∂ui

∂t
= ν

ui+1 − 2ui + ui−1

∆x2 −ui
ui+1 − ui−1

2∆x
+c0 +c1 ·ui +c2 ·ui +c3 ·ui ·ζ.

The data-science approach:
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ECMWF’s Summer of Weather Codes (ESoWC)
It will be essential to develop benchmark tests for deep-learning
applications in weather and climate science to address the
challenges ahead.
(conservation and bias, hyper-parameter-zoo, physical consistency, black-box-character, dense connectivity...)

→ I have proposed a challenge to ESoWC.

Apply until 17 April and win £5000 to work on this!

https://www.ecmwf.int/en/learning/workshops/ecmwf-summer-weather-code-2019
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Conclusions

I It is likely that deep learning will play an important role in future
weather and climate models.

I There are many different potential application areas for neural
networks.

I This requires a better understanding how knowledge of the
physical system can be projected into the network configurations
and how to “debug” biases etc..

I Deep learning hardware may also be useful for weather and
climate models.

I Challenges are similar when compared to the development of
conventional models (Earth System complexity, non-linearity and
scale interactions, exponential error growth, numerical
instabilities, the sphere, conservation properties, model biases,
uncertainty and insufficient coverage of observations,...)
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