DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary

Machine Learning of I/O Behavior

Eugen Betke, Julian Kunkel

Research Group German Climate Computing Center

Open Source Al Workshop 5th April 2019

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ

DKRZ Monitoring	Statistical Analysis	Job Footprinting 000000	First experiments 0000000	Summary 00
Table of content	ts			

- 2 Statistical Analysis
- 3 Job Footprinting
- 4 First experiments

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
●00000	0000	000000		00
Table Of Conto	pt.			

- 2 Statistical Analysis
- 3 Job Footprinting
- 4 First experiments

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
o●oooo	0000	000000	0000000	00
Goals				

Motivation

• Understanding the workload of the Mistral Supercomputer.

Goals

- Monitoring system development
 - A flexible and extensible monitoring system
 - A portable solution for the next HPC generation
- Establishing analysis workflows
 - Identification of problematic applications and key workloads
 - Understanding of typical I/O patterns
- Tooling

• Automatic identification of inefficient applications (long term goal)

DKRZ Monitoring	Statistical Analysis 0000	Job Footprinting 000000	First experiments	Summary 00

DKRZ Supercomputer and Monitoring

- The Mistral Supercomputer
 - 3,340 client nodes
 - 24 login nodes
 - 2 Lustre file systems
 - Slurm workload manager
- Monitoring System is built of
 - open source components
 - a self-developed data collector
- Provides statistics about
 - Iogin nodes
 - user jobs
 - workload manager queue

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
000●00	0000	000000	0000000	00
Captured I/O M	etrics			

- I/O metrics are captured and archived by default for each job
 - Some metadata metrics are cumulated
 - Relevant Lustre metrics are captured (focus on key aspects)

Source file: /proc/fs/lustre/llite/lustre*-*/stats

```
md_read = getattr + getxattr + readdir + statfs + listxattr + open + close
md_mod = setattr + setxattr + mkdir + link + rename + symlink + rmdir
md_file_create = create
md_file_delete = unlink
md_other = truncate + mmap + ioctl + fsync + mknod
```

Source file: /proc/fs/lustre/llite/lustre*-*/read_ahead_stats

```
osc_read_bytes, osc_read_calls
osc_write_bytes, osc_write_calls
read_bytes, read_calls
write_bytes, read_calls
seek
```

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
0000●0	0000	000000	0000000	00

- A daemon process iterates over all jobs
- Each job is fetched and analysed
 - Elasticsearch provides meta data
 - OpenTSDB provides I/O time series
- Output
 - $\bullet~$ I/O data is stored in separate JSON files
 - Job statistics
 - Sequence of I/O behaviour
- The tool is in an early development stage

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
00000				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Aggregated Data in JSON format: a Sample

```
"metadata": {
 " source": {
                                                                     "ts": {
   "time_limit": 5400.
                                                                      "read_bytes": [
   "@end": "2018-12-04T11:32:23".
   "cpu hours": 0.057778.
   "cpus_per_task": 1,
                                                                          "metric": "host.lustre.stats.read.bytes",
   "total_cpus": 8.
                                                                          "dps": {
   "@eligible": "2018-12-04T11:31:23".
                                                                            "1515756295": 5104980744214.
   "elapsed": 26.
                                                                            "1515756305": 5104980753366.
   "jobid": 14407,
                                                                            "1515756310": 5104980867566,
   "state": "COMPLETED",
                                                                            "1515756290": 5104980741946.
   "iobname": "mkmpost".
                                                                            "1515756300" · 5104980753366
   "ntasks_per_node": 8,
                                                                          }.
   "@start": "2018-12-04T11:31:57".
                                                                          "aggregateTags": [].
   "ntasks": 8.
                                                                          "tags": {
   "groupname": "mpis",
                                                                            "name": "lustre01",
   "nodes": " m11515 ".
                                                                            "system": "mistral".
   "iob_name": "mkmpost",
                                                                            "host": "m10753"
   "user_id": 237,
                                                                          3
   "group_id": 210,
                                                                        3
   "exit code": "0:0".
   "total_nodes": 1,
                                                                     ŀ
   "account": "ba09".
   "username": "m3"
 111
```

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
	•000	000000	0000000	00
Table Of Conten	t			

1 DKRZ Monitoring

- 2 Statistical Analysis
- 3 Job Footprinting
- 4 First experiments

5 Summary

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
000000	000	000000	000000	00

Statistical Analysis: Derived Metrics

- New metrics
 - that provide more information
 - e.g. "bytes/call" for read and write
- Other job characteristic metrics
 - to identify I/O intensive jobs
 - e.g. data read and written by a node
- Independent metrics
 - that can be used to compare jobs
 - e.g. average call rate done by a process

Examples: write metrics			
metric	Description		
'write_bytes'	Data written (job)		
'write_bytes_nn'	Data written (node)		
'write_bytes_ppn'	Data written (process)		
'write_bytes_rate'	I/O performance (job)		
'write_bytes_nn_rate'	I/O performance (node)		
'write_bytes_ppn_rate'	I/O performance (process)		

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
000000	0000	000000	000000	00

Statistical Analysis: Overview Dashboard

General informat	ion	
Nodes Processes Elapsed time	4 7 4.8h	

Metadata access

Metadata read ops Metadata read frequency 27 Mops 1537 ops/s

> 3.3 MB 71 TB 4.1 GB/s 1.0 GB/s 0.1 GB/s 21.2 Mops 1218 ops/s

Read		Write	Write
(Avg.) Bytes/op	4 MB	(Avg.) Bytes/op	(Avg.) Bytes/op
Total data	78 TB	Total data	Total data
(Avg.) Performance (job)	4.5 GB/s	(Avg.) Performance (job)	(Avg.) Performance (job
(Avg.) Performance (node)	1.1 GB/s	(Avg.) Performance (node)	(Avg.) Performance (nor
(Avg.) Performance (process)	0.2 GB/s	(Avg.) Performance (process)	(Avg.) Performance (pro
Operations	19.3 Mops	Operations	Operations
(Avg.) Operation frequency	1108 ops/s	(Avg.) Operation frequency	(Avg.) Operation freque

DKRZ Monitoring	Statistical Analysis 000●	Job Footprinting 000000	First experiments	Summary 00
Statistical app	roach			

Cans

- Provides understandable representation of job data
- Shows many useful information, that allows
 - Identify high work loads and responsible users
 - Compare jobs

Cant's

- Provides average I/O values only
 - can't always identify bad I/O performance
 - $\bullet\,$ e.g. I/O phases can be short, but fast
- Doesn't consider execution phases
 - e.g. creating checkpoints, computing, reading/writing data, ...

DKRZ Monitoring	Statistical Analysis 0000	Job Footprinting ●00000	First experiments	Summary 00
Table Of Conten	t			

1 DKRZ Monitoring

- 2 Statistical Analysis
- 3 Job Footprinting
- 4 First experiments

5 Summary

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
	0000	0●0000	0000000	00

Goal: Mathematical Representation of I/O Data

- Mapping of captured job data to a fixed length vector
- Each element represents weighted I/O behaviour

Goal

footprint(jobid) = \vec{v}_{jobid} with \vec{v} is a fixed length numeric vector

(1)

DKRZ Monitoring	Statistical Analysis 0000	Job Footprinting ○●○○○○	First experiments	Summary 00

Goal: Mathematical Representation of I/O Data

- Mapping of captured job data to a fixed length vector
- Each element represents weighted I/O behaviour

Example				
footprint(14400233) =	$\begin{pmatrix} X1:3\\ X2:1\\ X3:3\\ X4:1 \end{pmatrix}$	(1)	I/O B X1: X2: X3: X4:	ehavior Metadata intensive Using I/O node Highly parallel I/O No I/O

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
000000	0000	00●000	0000000	00
Basic Approach	1			

1. Capturing	Open Read Read Compute Write Write Compute Write Write Close
2. Segmentation	Open Read Read Compute Write Write Compute Write Write Close
3. Classification	X1 X2 X2 X2 X3 X4 X4 X3 X4 X4 X1 X1
4. Labeling	X1 : 4 (Meta Data Access)
	X2 : 2 (Read Intesity)
	X3 : 2 (No I/O Phase)
	X4 : 4 (Write Intesity)

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
	0000	000●00	0000000	00

Segmentation

- Problem
 - Number of nodes is variable
 - Segment size to large / too many segments
- Solution
 - Split data in 2D segments
 - 2 Convert to $n \times n$ matrix
 - for each segment and
 - for each metric

Computing statistics

(constant size)

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
000000	0000	000000	000000	00

Conversion of Variable Length Vectors to Fixed Length Statistics

DKRZ Monitoring	Statistical Analysis 0000	Job Footprinting 00000●	First experiments	Summary 00
Companya di manada di m				

Computing statistics

- Statistics are organized as a 2D-matrix
- stats (\vec{v}) is applied to both axis
 - x-axis combines runtime
 - y-axis combines nodes
- The computation is done
 - for each segment
 - for each of 13 metrics

Resulting segment size after conversion

12 stats on x-axis * 12 stats on y-axis * 13 metrics = 1872 floating point values

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
	0000	000000	●000000	00
Table Of Conte	nt			

1 DKRZ Monitoring

- 2 Statistical Analysis
- 3 Job Footprinting
- 4 First experiments

5 Summary

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
			000000	

General Information about the Test Dataset

- Data from 5 days
 - from 2018-12-07 to 2018-12-13
- 70846 jobs statistics downloaded in JSON format
 - uncompressed size is 360GB
- 33193 (47%) jobs are evaluated, that
 - contain non-empty time series and
 - and have exit status COMPLETED

Exit stat	tus statistics	
JOBS	EXIT STATUS	
1,026	CANCELLED	
63,636	COMPLETED	
5,753	FAILED	
3	NODE_FAIL	
426	TIMEOUT	

Slurm statistics				
JOBS	SLURM PARTITION			
37,989	compute,compute2			
241	gpu			
828	miklip			
34	minerva			
31,752	shared, prepost			
- /				

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
000000	0000	000000	00●0000	00
Segmentation	Parameters			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Data from 33,193 jobs is converted to 3,231,014 segments
 - Each segment is 1 minute long
 - Shorter segments are dropped
- Algorithm: kMeans (batch mode)
 - Input: segments (segment size is 1,872)
 - Output: 8 clusters

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
	0000	000000	000000	00

Segmentation Categories

D o	OKRZ Monitoring	Statistical Analysis 0000	Job Footprinting First experim 000000 0000000	nents Summary
F	Footprints (Exa	mple)		
'		npie)		
	 Now a job 	can be represented as a s	sequence of I/O behavior.	
	Example			
	• Sequence o	f I/O behavior		
	[676666	6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6
	666666	6 6 6 6 6 6 6 6 6 6 6 6 6	5 6 6 6 6 6 7 7 7 6 6 6 6 6 6 6	7
	6666770	6 6 6 6 6 6 6 6 6 6 6 6 6	5766666666666666666	6
	666766	6 6 6 7 6 6 6 6 6 6 6 6 6	3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6
	666666	6 6 6 6 6 6 6 6 1 6 6 6 7	7 6 6 6 6 7 7 7 0 6 0 5 6 6 6 6 6	6
	666660	6 6 6 6 6 6 6 6 6 6 6 6 6	3 6 6 6 6 7 0 6 6 0 0 6 0 6 0 7 6	5
	666666			6

6666666

75

66666

0 0 0

5 7

66

6 6 6

66666666

55600070

6 6

65005

Footprint

6 7

76666

666666666

66706

6

6

0 0 0

0 7

footprint(14461299) = [78, 1, 0, 0, 0, 24, 299, 38]

6 6 6 7 6 6 6 6 7 6

06

6 6 6 6

6 6 5

7

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
000000	0000	000000	00000●0	00
Footprint Cluste	ring Parameters			

- Footprints for each of 33193 jobs are created
- Footprints are normalized, to make them independent to job length
 - e.g. norm([78, 1, 0, 0, 0, 24, 299, 38]) = norm([156, 2, 0, 0, 0, 48, 598, 76])

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Algorithm: kMeans
 - Input: Footprints
 - Output: 8 clusters

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
			000000	

Footprint Categories and Distribution

Footprint statistics					
Cat	Percent	Jobs			
0	13.32	4,192			
1	6.06	1,906			
2	39.34	12,384			
3	7.27	2,290			
4	6.25	1,968			
5	9.75	3,069			
6	8.91	2,805			
7	9 10	2 864			

I/O b	ehavior
Cat	Description
X0	No I/O
X1	MD delete/modify
X2	MD other intensive
X3	Light read/write
X4	Light MD other
X5	No I/O
X6	File create/inefficient write
X7	Intensive I/O

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
	0000	000000	0000000	●0
Table Of Conter	nt			

1 DKRZ Monitoring

- 2 Statistical Analysis
- 3 Job Footprinting
- 4 First experiments

DKRZ Monitoring	Statistical Analysis	Job Footprinting	First experiments	Summary
	0000	000000	0000000	0●
Summarv				

- DKRZ monitoring system
 - **Open source** components + self-developed collector
 - Portable to the next HPC and other machines
- Statistical approach is a good way to
 - Identify large workloads
 - Find users who create large workloads
 - Compare jobs
- Job-Footprinting
 - Categorization of jobs